• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.55.2016.tde-26102016-090644
Documento
Autor
Nome completo
Rogelio Grau Acuña
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2016
Orientador
Banca examinadora
Federson, Márcia Cristina Anderson Braz (Presidente)
Benevieri, Pierluigi
Mesquita, Jaqueline Godoy
Silva, Geraldo Nunes
Teixeira, Eduardo Vasconcelos Oliveira
Título em inglês
On qualitative properties of generalized ODEs
Palavras-chave em inglês
Boundedness
Dynamic equations on time scales
Generalized ordinary differential equations
Kurzweil-Henstock-Stieltjes integral
Lyapunov functionals
Lyapunov stability
Measure differential equations
Prolongation
Resumo em inglês
In this work, our goal is to prove results on prolongation of solutions, uniform boundedness of solutions, uniform stability as well uniform asymptotic stability (in the classical sense of Lyapunov) for measure differential equations and for dynamic equations on time scales. In order to get our results, we employ the theory of generalized ODEs, since these equations encompass measure differential equations and dynamic equations on time scales. Therefore, to get our results, we start by proving the expected result for abstract generalized ODEs. Then, using the correspondence between the solutions of these equations and the solutions of measure differential equations (see [38]), we extend all the results to these the latter. After that, using the correspondence between the solutions of measure differential equations and the solutions of dynamic equations on time scales (see [21]), we extend all the results to these last equations. Finally, we investigate autonomous generalized ODEs and show that these equations do not enlarge the class of classical autonomous ODEs, even when we consider a more general class of functions as right-hand sides. All the new results presented in this work are contained in papers [16, 17, 18, 19].
Título em português
Sobre propriedades qualitativas de EDOs generalizadas
Palavras-chave em português
Equações diferenciais em medida
Equações diferenciais ordinárias generalizadas
Equações dinâmicas em escalas temporais
Estabilidade de Lyapunov
Funcionais de Lyapunov
Integral de Kurzweil-Henstock-Stieltjes
Limitação
Prolongamento
Resumo em português
Neste trabalho, nosso objetivo e provar resultados sobre prolongamento de soluções, limitação uniforme de soluções, estabilidade uniforme e estabilidade uniforme assintótica (no sentido clássico de Lyapunov) para equações diferenciais em medida e para equações dinâmicas em escalas temporais. A fim de obter os nossos resultados, empregamos a teoria de EDOs generalizadas, uma vez que estas equações abrangem equações diferenciais em medida e equações dinâmicas em escalas temporais. Portanto, para obter nossos resultados, vamos começar por provar, os resultados que queremos para EDOs generalizadas abstratas. Em seguida, usando a correspondência entre as soluções de EDOs generalizadas e soluções de equações diferenciais em medida (ver [38]), estenderemos os resultados para estas ultimas equações. Depois disso, usando a correspondência entre as soluções de equações diferenciais em medida e as soluções de equações dinâmicas em escalas temporais (ver [21]), estenderemos todos os resultados para estas ultimas equações. Finalmente, investigamos EDOs generalizadas autônomas e mostramos que estas equações não aumentam a classe de EDOs autônomas clássicas, mesmo quando consideramos uma classe mais geral de funções nos lados direitos das equações. Os novos resultados encontrados estão contidos em [16, 17, 18, 19].
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2016-10-26
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.