• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2007.tde-11122007-160141
Documento
Autor
Nome completo
Romenique da Rocha Silva
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2007
Orientador
Banca examinadora
Apaza, Carlos Alberto Maquera (Presidente)
Galvez, Americo Lopez
Tahzibi, Ali
Título em português
Homeomorfismos do toro cujo conjunto de rotação é um segmento de reta
Palavras-chave em português
Conjunto de rotação
Homeomorfismos do toro
Resumo em português
Um dos teoremas conhecidos de Poincaré afirma: Seja f um homeomorfismo do círculo que preserva orientação. Se p/q, com mdc(p, q) = 1, é o número de rotação de f, então f possui um ponto periódico de período q. Quando o conceito de número de rotação para um homeomorfismo do círculo é generalizado para um homeomorfismo f : T2 ? T2 homotópico à identidade, o resultado é um subconjunto convexo do plano R2, chamado conjunto de rotação e é denotado por ½(F) onde F é um levantamento de f. No caso que ½(F) tem interior não vazio, J. Franks obteve resultados análogos ao Teorema de Poincaré. Nesta dissertação estudamos um resultado análogo, obtido por Jonker e Zhang, quando ½(F) não tem interior. Mais precisamente: assumimos que ½(F) é um segmento de reta com inclinação irracional e mostramos que se 1 n(p1, p2) ? ½(F), com mdc(p1, p2, n) = 1, então f possui um ponto periódico de período n
Título em inglês
Torus homeomorphisms whose rotation set is a line segment
Palavras-chave em inglês
Rotation set
Torus homeomorphisms
Resumo em inglês
One of the well know results of Poincaré state: Let f be an orientation preserving circle homeomorphism. If p/q, with mdc(p, q) = 1, is the rotation number of f, then there is a periodic point for f whose period is q. When the concept of rotations number, for orientation preserving circle homeomorphism, is generalized for torus homeomorphism f : T2 ? T2 that are homotopic to the identity, it results in a convex subset of R2, called rotation set and is denoted by ½(F) where F is a lifting of f. In the case that ½(F) has non-empty interior, J. Franks proved similar results to the Poincaré Theorem. In this work, when ½(F) has empty interior, we study an similar result obtained by Jonker and Zhang. More precisely: they suppose that the rotation set ½(F) is a line segment with irrational slope and demonstrate that if 1 n(p1, p2) ? ½(F), with mdc(p1, p2, n) = 1, then f has a periodic point of period n
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
dissertacaorrs.pdf (344.43 Kbytes)
Data de Publicação
2007-12-11
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.