• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
Documento
Autor
Nome completo
Omar Chavez Cussy
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2017
Orientador
Banca examinadora
Ferreira, Carlos Henrique Grossi (Presidente)
Barreto, Alexandre Paiva
Brandão, Daniel Smania
Sperança, Llohann Dallagnol
Título em inglês
A proof of Seidel's conjectures on the volume of ideal tetrahedra in hyperbolic 3-space
Palavras-chave em inglês
Real hyperbolic space
Seidel's conjectures
Volume of ideal tetrahedra
Resumo em inglês
We prove a couple of conjectures raised by J. J. Seidel in On the volume of a hyperbolic simplex, Stud. Sci. Math. Hung. (21, 243249, 1986). These conjectures concern the volume of ideal hyperbolic tetrahedra in hyperbolic 3-space and are related to the following general framework. Since explicit formulae for geometric quantities in hyperbolic space (distance, area, volume, etc.) typically involve sophisticated transcendental functions, it is desirable (and quite useful in practice) to expresses these geometric quantities as monotonic functions of algebraic maps. Seidels Speculation 1 says that the volume of an ideal tetrahedron in hyperbolic 3-space depends only on the determinant and permanent of the doubly stochastic Gram matrix of its vertices; Speculation 4 claims that the mentioned volume is monotone in both the determinant and permanent. We are able to give affirmative answers to Speculations 1 and 4 by parameterizing the classifying space of (labelled) ideal tetrahedra in a suitable way.
Título em português
Uma demonstração das conjecturas de Seidel sobre o volume de tetraedros ideais no 3-espaço hiperbólico
Palavras-chave em português
Conjecturas de Seidel
Espaço hiperbólico real
Volume de tetraedros ideais
Resumo em português
Provamos duas conjecturas apresentadas por J. J. Seidel em On the volume of a hyperbolic simplex, Stud. Sci. Math. Hung. (21, 243249, 1986). Estas conjecturas referem ao volume de tetraedros ideais no 3-espaço hiperbólico e estão relacionadas com o seguinte quadro geral. Como fórmulas explícitas para grandezas geométricas no espaço hiperbólico (distancia, área, volume, etc.) tipicamente envolvem funções transcendentais sofisticadas, é desejável (e, na prática, bastante útil) expressar tais grandezas geométricas como aplicações monótonas de mapas algébricos. A Especulação 1 de Seidel diz que o volume de um tetraedro ideal no 3-espaço hiperbólico depende apenas do determinante e do permanente da matriz de Gram duplamente estocástica G de seus vértices; a Especulação 4 afirma que o referido volume é monótono tanto no determinante quanto no permanente de G. Damos respostas afirmativas ás Especulações 1 e 4 ao parametrizar o espaço classificador de tetraedros ideais (marcados) de maneira adequada.
 
Há arquivos retidos devido a solicitação (publicação de dados, patentes ou diretos autorais).
Data de Publicação
2017-09-11
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2014. Todos os direitos reservados.