• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2016.tde-08012016-110211
Documento
Autor
Nome completo
Arthur Geromel Fischer
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2015
Orientador
Banca examinadora
Rodrigues, Hildebrando Munhoz (Presidente)
Carvalho, Alexandre Nolasco de
Oliva Filho, Sergio Muniz
Petronilho, Gerson
Título em português
Robustez da dinâmica sob perturbações: da semicontinuidade superior à estabilidade estrutural
Palavras-chave em português
Atratores globais
Estabilidade estrutural
Semigrupos
Semigrupos gradientes
Semigrupos Morse-Smale
Resumo em português
O objetivo principal deste trabalho é o estudo da estabilidade estrutural dos atratores de semigrupos. Começamos este trabalho apresentando o conceito e propriedades básicas de semigrupos que possuem atratores globais. Estudamos, então, semigrupos gradientes e dinamicamente gradientes, mostrando que eles são equivalentes e que uma pequena perturbação autônoma de um semigrupo gradiente continua sendo gradiente. Estudamos as variedades estável e instável de um ponto de equilíbrio hiperbólico e o comportamento de soluções periódicas sob perturbação. Concluímos este trabalho com o estudo dos semigrupos Morse-Smale.
Título em inglês
Robustness of the dynamics under perturbations: from the upper semicontinuity to the structural stability
Palavras-chave em inglês
Global attractors
Gradient semigroups
Morse-Smale semigroups
Semigroups
Structural stability
Resumo em inglês
The main goal of this work is the study of structural stability of global attractors. We start this work by presenting the concept and basic properties of semigroups and global attractors. We then studied gradient and dinamically gradient semigroups, showing that these concepts are equivalent and that a small autonomous pertubation of a gradient semigroup remains a gradient semigroup. We studied the stable and unstable manifolds in the neighbourhood of a hyperbolic equilibrium point and the behavior of periodic solutions under perturbation. Finally, we studied the Morse-Smale semigroups.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2016-01-08
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.