• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2015.tde-05082015-102547
Documento
Autor
Nome completo
Liliam Carsava Merighe
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2015
Orientador
Banca examinadora
Levcovitz, Daniel (Presidente)
Brumatti, Paulo Roberto
Mirzaii, Behrooz
Salehyan, Parham
Título em português
Uma introdução às derivações localmente nilpotentes com uma aplicação ao 14º problema de Hilbert
Palavras-chave em português
Décimo quarto problema de Hilbert
Derivações
Derivações localmente nipotentes
Resumo em português
O principal objetivo desta dissertação é estudar um contraexemplo para o Décimo Quarto Problema de Hilbert no caso de dimensão n = 5, que foi apresentado por Arno van den Essen ([6]) em 2006 e que é baseado em um contraexemplo de D. Daigle e G. Freudenburg ([4]). Para isso, serão estudados os conceitos fundamentais da teoria de derivações e os princípios básicos das derivações localmente nilpotentes, bem como seus respectivos corolários. Dentre esses princípios encontra-se o Princípio 13, que garante que, se B é uma k- álgebra polinomial, digamos B = k[x1; ..., xn], (onde k é um corpo de característica zero) e D é uma derivação localmente nilpotente sobre B, então seu núcleo A = ker D satisfaz A = B &cap: Frac(A). Assim encontramos o contraexemplo esperado, ao mostrar que A não é finitamente gerado sobre k. Além disso, no apêndice deste trabalho, é dada uma prova para o caso de dimensão 1 do Décimo Quarto Problema de Hilbert.
Título em inglês
An introduction to the locally nilpotent derivations with an application to the Hilbert's 14th problem
Palavras-chave em inglês
Derivations
Hilbert's fourteenth problem
Locally nilpotent derivations
Resumo em inglês
The main objective of this thesis is to study a counterexample to the Hilberts Fourteenth Problem in dimension n = 5, which was presented by Arno van den Essen ([6]) in 2006 and that is based on a counterexample of D. Daigle and G. Freudenburg ([4]). For these purpose, we study the fundamental concepts of the theory of derivations and the basic principles of locally nilpotent derivations and their corollaries. Among these principles, Principle 13 ensures that if B is a k-algebra polynomial, say B = k[x1; ..., xn], (where k is a field of characteristic zero) and D is a locally nilpotent derivation on B, then its kernel A = ker D satisfies A = B ∩ Frac(A). Once we have proved that A is not finitely generated over k, we find the expected counterexample. In addition, in the appendix of this work is given a proof for the Hilberts Fourteenth Problemin dimension n = 1.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2015-08-05
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.