• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.3.2014.tde-26082015-153843
Documento
Autor
Nome completo
Persing Junior Cárdenas Vivanco
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2014
Orientador
Banca examinadora
Barros, Ettore Apolonio de (Presidente)
Becker, Marcelo
Lima, Raul Gonzalez
Título em português
Desenvolvimento do sistema de navegação de um AUV baseado em filtro estendido de Kalman.
Palavras-chave em português
Filtro estendido de Kalman
Fusão sensorial
Navegação em tempo real
Sistema de navegação
Veículo Submarino Autônomo
Resumo em português
Neste trabalho, é abordado o problema da navegação de um veículo submarino autônomo. São propostos estimadores de estado que realizam fusão sensorial baseada em Filtro Estendido de Kalman. Esses estimadores de estado empregam as medidas dos seguintes sensores: uma unidade de medição inercial, um sensor de velocidade por efeito Doppler, um profundímetro e uma bússola. Primeiramente foi projetado um estimador de estados para o AUV Pirajuba, onde a estimação da orientação do veículo é realizada de forma desacoplada à estimação da velocidade e posição do veículo. Em seguida, foram desenvolvidos dois estimadores de estado que estimam orientação, velocidade e profundidade do veículo de forma acoplada. Para o projeto e testes dos estimadores mencionados anteriormente, foi empregada uma base de dados contendo um registro de medições reais dos sensores do veículo submarino autônomo Pirajuba, durante testes de campo no lago de uma represa. Os resultados dos testes validaram os estimadores de estado propostos nesse trabalho. Por último, foi realizada uma análise comparativa dos estimadores de estado mencionados.
Título em inglês
Development of the navigation system of an AUV based in extended Kalman filter.
Palavras-chave em inglês
Autonomous Underwater Vehicle
Extended Kalman filter
Navigation system
Real time navigation
Sensorial fusion
Resumo em inglês
This work concerns the navigation problem of an autonomous underwater vehicle. Some state estimators using sensorial fusion were proposed, the sensorial fusion is based in an Extended Kalman Filter. The state estimators are fed by measurements of the following sensors: an inertial measurements unit, a velocity sensor by Doppler effect, a depthmeter and a compass. In the first version of the EKF algorithm, the vehicles attitude estimation was decoupled from the vehicle velocity estimation. The second version considers the coupling between linear velocity and the attitude in the vehicle reference frame, taking the velocity reading for correction of the filter estimates. Finally, in the third version, the coupling between position and attitude is also considered, but the correction of the filters estimates is based on the depth readings. Experiments for supporting the design and validation of the navigation algorithms were based on a database constructed with motion measurements during the AUV maneuvers in the north coast of Sao Paulo, and the Guarapiranga lake in the São Paulo city. This work presents a comparative analysis of those algorithms.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2015-09-02
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.