• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.55.2020.tde-07012020-090607
Documento
Autor
Nombre completo
Alex Pereira da Silva
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2019
Director
Tribunal
Silva, Paulo Leandro Dattori da (Presidente)
Barostichi, Rafael Fernando
Bonotto, Everaldo de Mello
Rosado, José Antonio Langa
Rubio, Pedro Marin
Título en inglés
Resolubility of linear Cauchy problems on Fréchet spaces and a de- layed Kaldors model
Palabras clave en inglés
Delay differential equations
Fréchet spaces
Kaldors model.
Linear Cauchy problems
Pseudodifferential operators
Resumen en inglés
The long-run aim of this thesis is to solve delay differential equations with infinite delay of the type
d dt u(t) = Au(t) + ∫t-∞ u(s)k(t - s)ds+ f (t, u(t)),

on Fréchet spaces under an extended theory of groups of linear operators; where A is a linear operator, k(s) ≥ 0 satisfies ∫0 k(s)ds = 1 and f is a nonlinear map. In order to pursue such a goal we study a discrete delay model which explains the natural economic fluctuations considering how economic stability is affected by the role of the fiscal and monetary policies and a possible government inefficiency concerning its fiscal policy decision-making. On the other hand, we start to develop such an extended theory by considering linear Cauchy problems associated to a continuous linear operator on Fréchet spaces, for which we establish necessary and sufficient conditions for generation of a uniformly continuous group which provides the unique solution. Further consequences arises by considering pseudodifferential operators with constant coefficients defined on a particular Fréchet space of distributions, namely FL2loc, and special attention is given to the distributional solution of the heat equation on FL2loc for all time, which extends the standard solution on Hilbert spaces for positive time.
Título en portugués
Resolubilidade de problemas lineares de Cauchy em espaços de Fréchet e um modelo de Kaldor com retardo
Palabras clave en portugués
Equações diferenciais com retardo
Espaços de Fréchet
Modelo de Kaldor.
Operadores pseudodiferenciais
Problemas de Cauchy lineares
Resumen en portugués
O objetivo a longo prazo desta tese é resolver equações diferenciais da forma
d dt u(t) = Au(t) + ∫t-∞ u(s)k(t - s)ds+ f (t, u(t)),

em espaços de Fréchet estendendo a teoria de grupos de operadores lineares; sendo A um operador linear, k(s) ≥ 0 tal que ∫0 k(s)ds = 1 e f uma função não linear. Perseguindo tal fim, estudamos um modelo com retardo que explica as flutuações naturais da economia considerando como a estabilidade econômica é afetada pela atuação do governo, suas políticas fiscal e monetária e uma possível ineficiência do governo no que diz respeito à sua tomada de decisão na política fiscal. Por outro lado, damos início a referida extensão da teoria de grupos ao considerar problemas de Cauchy lineares associados a operadores lineares contínuos em espaços de Fréchet, para os quais estabelecemos condições necessárias e suficientes para a geração de um grupo uniformemente contínuo em tal espaço que fornece a única solução do problema. Consequências adicionais surgem quando se considera operadores pseudodiferenciais com coeficientes constantes definidos em um particular espaço de Fréchet de distribuições, a saber FL2loc, e uma atenção especial é dada à solução distribucional da equação do calor em FL2loc para todo tempo, a qual estende a solução usual em espaços de Hilbert para tempo positivo.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2020-01-10
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.