• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.45.2022.tde-02092022-150552
Documento
Autor
Nome completo
Rafael Zuolo Coppini Lima
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2022
Orientador
Banca examinadora
Kohayakawa, Yoshiharu (Presidente)
Laber, Eduardo Sany
Pait, Felipe Miguel
 
Título em inglês
Dimension reduction in projective clustering
Palavras-chave em inglês
Approximation
Clustering
Dimension reduction
Johnson-Lindenstrauss lemma
Projective clustering
Singular value decomposition
Resumo em inglês
The high dimensionality of data may be a barrier to algorithmic efficiency (Nelson, 2020), mainly because of the well known curse of dimensionality which imposes exponential time and/or memory complexity for algorithms, such as the nearest neighbour problem (Har-Peled, Indyk, and Motwani, 2012). It is natural then to search for ways to break the curse by relaxing the problem with approximate versions and by finding good ways to reduce the dimension of data. Our objective is to write a dissertation about a dimension reduction scheme for clustering under 2 2 metric, with a focus on an approximation scheme for a particular case of this problem, called projective clustering. The dimension reduction is achieved by combining randomized techniques, such as the Johnson and Lindenstrauss Lemma, and deterministic techniques, such as the singular value decomposition. The result is an (1 + )-approximation for projective clustering that is polynomial in the number of data points and the dimension of the space. This dissertation will have as main references four papers: Sarlós, 2006, Feldman, Schmidt, and Sohler, 2020, Pratap and Sen, 2018 and Deshpande, Rademacher, Vempala, and Wang, 2006. The results presented in the dissertation will be either the original or modified versions that incorporate current improvements.
 
Título em português
Redução de dimensão para agrupamento projetivo
Palavras-chave em português
Agrupamento projetivo
Aproximação
Clustering
Decomposição em valores singulares
Lema de Johnson e Lindenstrauss
Redução de dimensão
Resumo em português
A dimensão dos dados pode ser uma barreira para a eficiência de algoritmos (Nelson, 2020) principal- mente em razão da chamada maldição da dimensão, que impõe dependências exponenciais na dimensão para a complexidade de tempo e/ou espaço dos algoritmos para alguns problemas. Este é o caso, por exemplo, do problema do vizinho mais próximo (Har-Peled, Indyk e Motwani, 2012). É natural então estudar aproximações de soluções dos problemas e formas de reduzir a dimensão das instâncias para tentar quebrar essa maldição. Nosso objetivo é escrever uma dissertação sobre um esquema de redução de dimensão para clustering (agrupamento) sob a métrica 2 2, pondo foco em um esquema de aproximação para um caso particular do problema anterior, chamado projective clustering (agrupamento projetivo). A redução de dimensão é feita combinando técnicas aleatorizadas, como o Lema de Johnson e Lindenstrauss, e determinísticas, como a decomposição em valores singulares. Obtém-se uma (1 + )-aproximação para o problema do agrupamento projetivo, polinomial no número de pontos e na dimensão. Esta dissertação terá como referências principais quatro artigos: Sarlós, 2006, Feldman, Schmidt e Sohler, 2020, Pratap e Sen, 2018 e Deshpande, Rade- macher, Vempala e Wang, 2006. Os resultados apresentados na dissertação serão ou os originais ou versões modificadas, incorporando aprimoramentos recentes.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
teseVersaoJanus.pdf (1.53 Mbytes)
Data de Publicação
2022-09-02
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores.
CeTI-SC/STI
© 2001-2024. Biblioteca Digital de Teses e Dissertações da USP.