
Dimension reduction
in projective clustering

Rafael Zuolo Coppini Lima

Thesis presented to the

Institute of Mathematics and Statistics

of the University of São Paulo

in partial fulfillment

of the requirements

for the degree of

Master of Science

Program: Ciência da Computação

Advisor: Prof. Dr. Yoshiharu Kohayakawa

During the development of this work the author

was supported by CAPES (Finance Code 001)

São Paulo

June 22, 2022

Dimension reduction
in projective clustering

Rafael Zuolo Coppini Lima

This version of the thesis includes the

corrections and modifications suggested

by the Examining Committee during the

defense of the original version of the

work, which took place on June 22, 2022.

A copy of the original version is available

at the Institute of Mathematics and

Statistics of the University of São Paulo.

Examining Committee:

Prof. Dr. Yoshiharu Kohayakawa (advisor) – IME-USP

Prof. Dr. Eduardo Sany Laber – PUCRJ

Prof. Dr. Felipe Miguel Pait – EP - USP

Autorizo a reprodução e divulgação total ou parcial deste trabalho, por

qualquer meio convencional ou eletrônico, para fins de estudo e pesquisa,

desde que citada a fonte.

Resumo

Rafael Zuolo Coppini Lima. Redução de dimensão para agrupamento projetivo.

Dissertação (Mestrado). Instituto de Matemática e Estatística, Universidade de São Paulo,

São Paulo, 2022.

A dimensão dos dados pode ser uma barreira para a eficiência de algoritmos (Nelson, 2020) principal-

mente em razão da chamada “maldição da dimensão”, que impõe dependências exponenciais na dimensão

para a complexidade de tempo e/ou espaço dos algoritmos para alguns problemas. Este é o caso, por exemplo,

do problema do vizinho mais próximo (Har-Peled, Indyk e Motwani, 2012). É natural então estudar

aproximações de soluções dos problemas e formas de reduzir a dimensão das instâncias para tentar quebrar

essa maldição. Nosso objetivo é escrever uma dissertação sobre um esquema de redução de dimensão para

clustering (agrupamento) sob a métrica 𝓁
2

2
, pondo foco em um esquema de aproximação para um caso particular

do problema anterior, chamado projective clustering (agrupamento projetivo). A redução de dimensão é feita

combinando técnicas aleatorizadas, como o Lema de Johnson e Lindenstrauss, e determinísticas, como a

decomposição em valores singulares. Obtém-se uma (1 + 𝜀)-aproximação para o problema do agrupamento

projetivo, polinomial no número de pontos e na dimensão. Esta dissertação terá como referências principais

quatro artigos: Sarlós, 2006, Feldman, Schmidt e Sohler, 2020, Pratap e Sen, 2018 e Deshpande, Rade-

macher, Vempala e Wang, 2006. Os resultados apresentados na dissertação serão ou os originais ou versões

modificadas, incorporando aprimoramentos recentes.

Palavras-chave: Clustering. Agrupamento projetivo. Redução de dimensão. Aproximação. Decomposição

em valores singulares. Lema de Johnson e Lindenstrauss.

Abstract

Rafael Zuolo Coppini Lima. Dimension reduction in projective clustering. Thesis

(Master’s). Institute of Mathematics and Statistics, University of São Paulo, São Paulo,

2022.

The high dimensionality of data may be a barrier to algorithmic efficiency (Nelson, 2020), mainly

because of the well known “curse of dimensionality” which imposes exponential time and/or memory

complexity for algorithms, such as the nearest neighbour problem (Har-Peled, Indyk, and Motwani, 2012).

It is natural then to search for ways to break the curse by relaxing the problem with approximate versions

and by finding good ways to reduce the dimension of data. Our objective is to write a dissertation about a

dimension reduction scheme for clustering under 𝓁
2

2
metric, with a focus on an approximation scheme for a

particular case of this problem, called projective clustering. The dimension reduction is achieved by combining

randomized techniques, such as the Johnson and Lindenstrauss Lemma, and deterministic techniques, such

as the singular value decomposition. The result is an (1 + 𝜀)-approximation for projective clustering that

is polynomial in the number of data points and the dimension of the space. This dissertation will have as

main references four papers: Sarlós, 2006, Feldman, Schmidt, and Sohler, 2020, Pratap and Sen, 2018

and Deshpande, Rademacher, Vempala, and Wang, 2006. The results presented in the dissertation will be

either the original or modified versions that incorporate current improvements.

Keywords: Clustering. Projective Clustering. Dimension reduction. Approximation. Singular value de-

composition. Johnson-Lindenstrauss lemma.

vii

Contents

1 Introduction 1

2 Preliminaries 2
2.1 Definitions . 2

2.2 Best-fit subspace and singular value decomposition 5

2.2.1 Best approximation in the Frobenius norm 8

2.2.2 Finding the SVD in polynomial time 8

2.3 The Johnson-Lindenstrauss Lemma . 9

2.3.1 Consequences of the Johnson and Lindenstrauss Lemma 12

3 The (𝓁
2

2
,)-clustering problem 15

3.1 Low dimensional representation . 17

3.2 Sketch definition and dimension reduction 20

4 Approximation by dimension reduction 23
4.1 Random dimension reduction scheme for the best-fit linear 𝑗-subspace

problem . 23

4.2 Finding an 𝜀-sketch for the (𝓁
2

2
,)-clustering problem 33

5 Application to projective clustering 41
5.1 A (1 + 𝜀)-approximation for projective clustering 41

5.2 Faster approximation using 𝜀-sketches 53

6 Conclusion and further questions 55

Appendices

A Additional proofs 56

B Constant size family example 61

viii

C Quick reference for theorems 63

D Quick reference for algorithms 71

References 73

Index 76

1

Chapter 1

Introduction

In many areas of science, research depends on the analysis of large amounts of high-

dimensional data. But many algorithms suffer from the well known “curse of dimensional-

ity” and are inefficient when the dimension of the space is too big. One example of this

phenomenon is the currently known algorithms for the nearest neighbour search problem.

See Har-Peled, Indyk, and Motwani (2012).

One way to circumvent this barrier is to make the problems easier by relaxing the

necessity of an exact and deterministic answer. This can be enough to break the curse and

enable practical applications that scale well with the dimension and the number of data

points. See Matoušek (2013, Chap. 2, Section 6).

It makes sense then to study dimension reduction as a way to find approximations.

Given a data set for a problem where dimensionality is a barrier for algorithmic efficiency,

we want to find another data set called sketch that is contained in a subspace with lower

dimension. The desired property is that solving the problem for the sketch is more efficient

and would give a “good” approximation for the original data set with high probability.

In this dissertation we will study how to find approximations for clustering problems

under the 𝓁
2

2
-metric via dimension reduction. We will present a randomized algorithm that

with high probability finds sketches contained in subspaces of dimension independent of

the number of points and of the original dimension of the space with time complexity

linear in those parameters. This sketch is generic enough to be useful for any clustering

problem under the 𝓁
2

2
-metric, which includes the 𝑘-means clustering problem and the

projective clustering problem. We will also show an example where we “break the curse of

dimensionality”, that is, we use the developed sketch to improve the time complexity of an

approximation algorithm for linear projective clustering from an exponential dependence

in the dimension to a polynomial one. This last result is mostly of theoretical interest,

since the degree of this polynomial is rather large.

2

Chapter 2

Preliminaries

In this chapter we will present our notation, definitions, and preliminary results and

theory that will be used throughout this work.

2.1 Definitions

The letters 𝑛, 𝑑, 𝑟 , 𝑖 and 𝑗 will always denote non-negative integers. Usually 𝑛 will

denote the cardinality of a non-empty finite set or multiset, and 𝑑 will denote the dimension

of a real vector space. We will adopt the convention that for any two sets 𝐴 and 𝐵, if 𝐴 ⊂ 𝐵,

then we may have 𝐴 = 𝐵.

Matrix notation: The set of real 𝑑 ×𝑛 matrices will be denoted by ℝ
𝑑×𝑛

. It will be useful

to visualize the matrices as multisets of vectors of ℝ
𝑑
. For example, if 𝐴 ∈ ℝ

𝑑×𝑛
then the 𝑖

th

column 𝑎𝑖 of 𝐴 can be seen as a vector of ℝ
𝑑
. We will abuse the notation and write 𝑎 ∈ 𝐴

to say that 𝑎 is a column of 𝐴 seen as a vector, and 𝑎𝑖 ∈ 𝐴 to say that 𝑎𝑖 is the 𝑖
th

column

of 𝐴 seen as a vector. Since matrices may have two or more equal columns, it can happen

that for 𝑎𝑖 and 𝑎𝑗 ∈ 𝐴, we have 𝑖 ≠ 𝑗 but 𝑎𝑖 = 𝑎𝑗 .

When convenient and to not pollute the notation we will treat vectors as column

matrices. For example, suppose that 𝑢 and 𝑣 ∈ ℝ
𝑑
. The usual real inner product denoted

as ⟨𝑢, 𝑣⟩ can be written as 𝑢
𝑇
𝑣, where 𝑢

𝑇
is seen as an 1 × 𝑑 matrix and 𝑣 as an 𝑑 × 1

matrix.

Definition 1. Let 𝐶 ⊂ ℝ
𝑑

be a non-empty set and let 𝑝 ∈ ℝ
𝑑

be a vector. Then

dist(𝑝, 𝐶) ∶= inf {‖𝑝 − 𝑐‖ ∶ 𝑐 ∈ 𝐶} ,

where ‖ ⋅ ‖ is the usual Euclidean norm.

Definition 2. Let 𝐶 ⊂ ℝ
𝑑

be a non-empty set and let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix. Then

dist
2

(𝐴, 𝐶) ∶= ∑

𝑎∈𝐴

(dist(𝑎, 𝐶))
2
.

2.1 | DEFINITIONS

3

Definition 3. Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix. The subspace of ℝ
𝑑

spanned by the columns of 𝐴

will be denoted as span(𝐴).

Definition 4. Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix and let 𝑎𝑖𝑗 be the row 𝑖 and column 𝑗 entry of 𝐴. The

Frobenius norm of 𝐴 is

‖𝐴‖𝐹 ∶=

√

𝑑

∑

𝑖=1

𝑛

∑

𝑗=1

𝑎
2

𝑖𝑗
.

Note that if we see each column of 𝐴 as a ℝ
𝑑

vector we have

‖𝐴‖
2

𝐹
= ∑

𝑎∈𝐴

‖𝑎‖
2
.

Note also that by seeing vectors as 𝑑 × 1 matrices, we have for any 𝑝 ∈ ℝ
𝑑

‖𝑝‖
𝐹
= ‖𝑝‖ .

Definition 5. We say that a matrix 𝑃 ∈ ℝ
𝑑×𝑗

has orthonormal columns when the

set {𝑝1, … , 𝑝𝑗 } of columns of 𝑃 all have norm one and 𝑃
𝑇
𝑃 is equal to the 𝑗 × 𝑗 identity

matrix . An orthogonal matrix is a square matrix with orthonormal columns.

Definition 6 (Orthogonal projection). Let 𝑣 ∈ ℝ
𝑑

be a vector and let 𝐿 be a subspace of ℝ
𝑑
.

Then 𝜋𝐿(𝑣) ∈ ℝ
𝑑

is the orthogonal projection of 𝑣 onto 𝐿.

Definition 7 (Orthogonal projection of a matrix). Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix and let 𝐿 be

a subspace of ℝ
𝑑
. The orthogonal projection of 𝐴 into 𝐿 is the matrix 𝜋𝐿(𝐴) ∈ ℝ

𝑑×𝑛
where

the 𝑖
th

column of 𝜋𝐿(𝐴) is the orthogonal projection of the 𝑖
th

column of 𝐴 into 𝐿.

Now we will state some facts and results that will be useful later. We will omit the

proofs which are straightforward.

Fact 8. Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix, let 𝐿 be a subspace of ℝ
𝑑

of dimension 𝑗 and let 𝑃 ∈ ℝ
𝑑×𝑗

be a matrix with orthonormal columns that spans 𝐿. Then the orthogonal projection 𝜋𝐿(𝐴)

equals 𝑃𝑃
𝑇
𝐴. Also note that

dist
2

(𝐴, 𝐿) = ‖𝐴 − 𝑃𝑃
𝑇
𝐴‖

2

𝐹
.

Definition 9. Let 𝐴 and 𝐵 ∈ ℝ
𝑑×𝑛

be matrices. We will abuse the notation and adopt

that 𝜋𝐵(𝐴) means the same as 𝜋span(𝐵)(𝐴).

Note that if 𝐵 has orthonormal columns, then 𝜋𝐵(𝐴) = 𝐵𝐵
𝑇
𝐴. When it is clear from the

context we will call matrices like 𝐵𝐵
𝑇

projector matrices to span(𝐵).

Fact 10 (Pythagoras’ Theorem). Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix, let 𝐿 be a subspace of ℝ
𝑑

of

dimension 𝑗 and let 𝑃 ∈ ℝ
𝑑×𝑗

with orthonormal columns that spans 𝐿. Then it follows from

the Pythagoras’ Theorem that

‖𝐴‖
2

𝐹
= ‖𝑃𝑃

𝑇
𝐴‖

2

𝐹
+ ‖𝐴 − 𝑃𝑃

𝑇
𝐴‖

2

𝐹
.

4

2 | PRELIMINARIES

Fact 11 (Trace representation). For any real matrix 𝐴, we have that

‖𝐴‖
2

𝐹
= Tr(𝐴

𝑇
𝐴)

and

‖𝐴‖
2

𝐹
= ‖𝐴

𝑇
‖
2

𝐹
.

Fact 12 (Cyclic property of the Trace function). For any matrices 𝐴 ∈ ℝ
𝑑×𝑛

and 𝐵 ∈ ℝ
𝑛×𝑑

,

we have

Tr(𝐴𝐵) = Tr(𝐵𝐴).

Fact 13 (Unitarily invariant norm). Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix, let 𝑃 ∈ ℝ
𝑑×𝑑

and 𝑄 ∈ ℝ
𝑛×𝑛

be

orthogonal matrices and let 𝑆 ∈ ℝ
𝑠×𝑑

be a matrix with orthonormal columns and let 𝑅 ∈ ℝ
𝑛×𝑟

be such that 𝑅
𝑇

has orthonormal columns. Then

‖𝐴‖
2

𝐹
= ‖𝑃𝐴‖

2

𝐹
= ‖𝐴𝑄‖

2

𝐹
= ‖𝑆𝐴‖

2

𝐹
= ‖𝐴𝑅‖

2

𝐹
.

Proof. Note that ‖𝐴‖
2

𝐹
= Tr(𝐴

𝑇
𝐴) and for any unitary matrix 𝑃 , we have that 𝑃

𝑇
𝑃 = 𝑃𝑃

𝑇
= 𝐼 .

Also if 𝑆 has orthonormal columns, then 𝑆
𝑇
𝑆 = 𝐼 and 𝑅𝑅

𝑇
= 𝐼 . We have that

‖𝑃𝐴‖
2

𝐹
= Tr(𝐴

𝑇
𝑃
𝑇
𝑃𝐴) = Tr(𝐴

𝑇
𝐴) = ‖𝐴‖

2

𝐹

and

‖𝑆𝐴‖
2

𝐹
= Tr(𝐴

𝑇
𝑆
𝑇
𝑆𝐴) = Tr(𝐴

𝑇
𝐴) = ‖𝐴‖

2

𝐹
.

Similarly we have

‖𝐴𝑄‖
2

𝐹
= ‖𝑄

𝑇
𝐴

𝑇
‖
2

𝐹
= ‖𝐴‖

2

𝐹

and

‖𝐴𝑅‖
2

𝐹
= ‖𝑅

𝑇
𝐴

𝑇
‖
2

𝐹
= ‖𝐴‖

2

𝐹
,

by the same argument. ■

Definition 14 (Big-O notation). For two functions 𝑓 , 𝑔 ∶ ℝ → ℝ, we say that 𝑓 (𝑥) = 𝑂(𝑔(𝑥))

if there exist constants 𝐾 and 𝑥0 such that |𝑓 (𝑥)| ≤ 𝐾|𝑔(𝑥)| for all 𝑥 ≥ 𝑥0. We

say that 𝑓 (𝑥) = Ω(𝑔(𝑥)) if 𝑔(𝑥) = 𝑂(𝑓 (𝑥)). Finally, we say that 𝑓 (𝑥) = Θ(𝑔(𝑥))

if 𝑓 (𝑥) = 𝑂(𝑔(𝑥)) and 𝑓 (𝑥) = Ω(𝑔(𝑥)).

When we use this notation the variable 𝑥 and the functions 𝑓 and 𝑔 will be implicit

from the context. Note that the domain of the functions can be changed to ℤ or to [𝑎, ∞),

for any real 𝑎, and the notation will still be well defined.

Model of Computation: To study the complexity of algorithms we will adopt the real

random access machine model, proposed by Shamos (1978). It is similar to the usual RAM

model, but we allow the storage and computation of real numbers. We assume that all

arithmetic operations (+, −, ×, /, log, sin, …) and comparisons (<, ≤, =, ≥, >) between two

reals can be computed in constant time. Also we will assume that reading and writing reals

can be done in constant time. For example, reading a matrix 𝐴 ∈ ℝ
𝑑×𝑛

and computing the

product 𝐴𝑣 for some vector 𝑣 ∈ ℝ
𝑛

can be realized with 𝑂(𝑛𝑑) operations and with “infinite

precision”, i.e., we always obtain the exact answer. Since each operation takes constant

2.2 | BEST-FIT SUBSPACE AND SINGULAR VALUE DECOMPOSITION

5

time we have that this product takes 𝑂(𝑛𝑑) time. Storing a real number will require 𝑂(1)

storage locations, therefore to store the matrix 𝐴 we can use 𝑂(𝑛𝑑) memory space.

The bounds we will obtain for the time complexity of algorithms will therefore reflect

the number of operations in this idealized model. We will ignore questions as to how

represent, read and operate with real numbers in finite time.

2.2 Best-fit subspace and singular value
decomposition

Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix. In this section we will study the problem of finding a

subspace 𝑉 of given dimension 𝑗 ≤ 𝑑 that minimizes dist
2

(𝐴, 𝑉) and its relation to matrix

decomposition.

Definition 15 (best-fit linear 𝑗-subspace problem). Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix and let 𝑗 ≤ 𝑑

be a positive integer. The best-fit linear 𝑗-subspace problem in ℝ
𝑑

is to find a linear subspace 𝑉

of ℝ
𝑑

of dimension 𝑗 such that

dist
2

(𝐴, 𝑉) = min

{

dist
2

(𝐴, 𝐿) ∶ 𝐿 ⊂ ℝ
𝑑

is a subspace of dimension 𝑗

}

.

We emphasize that the subspace is linear, since we could consider a similar more

general problem where we want to find the best-fit affine subspace.

Figure 2.1: Example of best-fit linear 1-subspace in ℝ
2
.

The singular value decomposition (SVD) of 𝐴 is a matrix decomposition that comes

naturally when we try to solve the best-fit linear 𝑗-subspace problem. Every matrix admits

a singular value decomposition. Suppose that rank(𝐴) = 𝑟 . There exist matrices 𝑈 ∈ ℝ
𝑑×𝑟

and 𝑉 ∈ ℝ
𝑛×𝑟

with orthonormal columns and a diagonal matrix Σ ∈ ℝ
𝑟×𝑟

with positive

entries such that 𝐴 = 𝑈Σ𝑉
𝑇
.

Let 𝑢1, … , 𝑢𝑟 and 𝑣1, … , 𝑣𝑟 be the columns of 𝑈 and 𝑉 , respectively. LetΣ = Diag{𝜎1, … , 𝜎𝑟}

with 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑟 . We call the vectors 𝑢𝑖 left singular vectors, the 𝑣𝑖 right singular

vectors and the 𝜎𝑖 singular values. We will show that the sequence 𝜎1, … , 𝜎𝑟 of singular

values is uniquely determined by 𝐴.

6

2 | PRELIMINARIES

a1 an. . . = u1 · · · ur

σ1

σr

vT
1

. . .
...

A ∈ Rd×n U ∈ Rd×r
Σ ∈ Rr×r

vT
r

V T ∈ Rr×n

Figure 2.2: A SVD decomposition of an 𝑑 × 𝑛 matrix of rank 𝑟 .

Notation 16. Let 𝐴 be a matrix and 1 ≤ 𝑖 ≤ rank(𝐴) an integer. The 𝑖
th

singular value of 𝐴

is denoted 𝜎𝑖(𝐴).

To better visualize the singular value decomposition, we will define the left singular

vectors and singular values and its relation to the problem of finding a best-fit linear 𝑗-sub-

space. Let us start with 𝑗 = 1. Finding the best-fit linear 1-subspace is equivalent to finding

a norm-one vector 𝑢 that minimizes

‖𝐴 − 𝑢𝑢
𝑇
𝐴‖

2

𝐹
, (2.1)

because equation (2.1) equals dist
2

(𝐴, 𝑉), where 𝑉 is the subspace spanned by 𝑢. From

Fact 10 (Pythagoras) it follows that minimizing the above expression is equivalent to

maximizing

‖𝑢𝑢
𝑇
𝐴‖

2

𝐹
= ‖𝑢

𝑇
𝐴‖

2

𝐹
.

Definition 17. Let𝐴 ∈ ℝ
𝑑×𝑛

be a matrix. A first left singular vector of 𝐴 is any vector 𝑢1 ∈ ℝ
𝑑

such that

𝑢1 ∶= argmax

{

‖𝑢
𝑇
𝐴‖𝐹 ∶ ‖𝑢‖ = 1

}

,

and the first singular value is

𝜎1 ∶= ‖𝑢
𝑇

1
𝐴‖𝐹 .

We say that 𝑢1 is a left singular vector associated with the singular value 𝜎1.

Note that 𝑢1 is not uniquely defined since −𝑢1 would also be a valid choice. To define

the subsequent singular vectors and values, we can use a greedy approach. A second left

singular vector 𝑢2 maximizes the same expression, but with the restriction that it must be

orthogonal to 𝑢1.

𝑢2 ∶= argmax

{

‖𝑢
𝑇
𝐴‖𝐹 ∶ ‖𝑢‖ = 1, 𝑢 ⟂ 𝑢1

}

.

The second singular value is

𝜎2 ∶= ‖𝑢
𝑇

2
𝐴‖𝐹 .

We can define all singular values and vectors this way, where an 𝑖
th

left singular vector 𝑢𝑖

is a norm one vector that is orthogonal to all lower singular vectors and maximizes ‖𝑢
𝑇
𝐴‖𝐹 .

2.2 | BEST-FIT SUBSPACE AND SINGULAR VALUE DECOMPOSITION

7

The associated singular value is ‖𝑢
𝑇

𝑖
𝐴‖𝐹 . We stop when 𝑖 = rank(𝐴), since for 𝑖 > rank(𝐴),

the set {𝑢1, … , 𝑢𝑟} spans the same subspace as span(𝐴), and thus ‖𝑢
𝑇
𝐴‖𝐹 would be zero

for all vectors orthogonal to 𝑢1, … , 𝑢𝑟 . An interesting fact is that for all 𝑗 = 1, … , 𝑟 , the

subspace spanned by 𝑢1, … , 𝑢𝑗 is a best-fit 𝑗-subspace. The proof of this fact can be found

on Blum, Hopcroft, and Kannan (2020, Chap. 3, Sec. 3).

Having defined the left singular vector and singular values, we can define the right

singular vectors in the following way: if 𝑢𝑖 is a 𝑖
th

left singular vector and 𝜎𝑖 is the 𝑖
th

singular value, the 𝑖
th

right singular vector 𝑣𝑖 is

𝑣𝑖 ∶=

1

𝜎𝑖

𝐴
𝑇
𝑢𝑖.

Note that by definition ‖𝑣𝑖‖ = 1. The proof that 𝑣𝑖 ⟂ 𝑣𝑗 for all 𝑖 ≠ 𝑗 can be found in

Blum, Hopcroft, and Kannan (2020, Chap. 3, Sec. 6).

Having the definitions of 𝑈 , Σ and 𝑉 , we just need to show that 𝐴 = 𝑈Σ𝑉
𝑇
. One way

of doing this is by rewriting 𝑈Σ𝑉
𝑇

as

𝑈Σ𝑉
𝑇
=

𝑟

∑

𝑖=1

𝜎𝑖𝑢𝑖𝑣
𝑇

𝑖
, (2.2)

and seeing that for every vector 𝑥 ∈ ℝ
𝑑
, we have 𝑥

𝑇
𝐴 = 𝑥

𝑇
𝑈Σ𝑉

𝑇
. The details can be found

in Blum, Hopcroft, and Kannan (2020, Chap. 3, Sec 3).

The singular values of a matrix can be useful to determine how much a matrix can

change the norm of a vector. For every 𝑥 ∈ ℝ
𝑑

we have

‖
‖
𝐴

𝑇
𝑥
‖
‖
≤ 𝜎1(𝐴) ‖𝑥‖ .

This follows by the definition of 𝜎1(𝐴).

If the matrix 𝐴 is full rank, that is, if 𝑟 = 𝑑, then we have that the last singular

value 𝜎𝑑(𝐴) is a lower bound for the norm of 𝐴
𝑇
𝑥 .

‖
‖
𝐴

𝑇
𝑥
‖
‖
≥ 𝜎𝑑(𝐴) ‖𝑥‖ .

This follows by noting that
‖
‖
𝐴

𝑇
𝑥
‖
‖

2

=
‖
‖
𝑉
𝑇
𝐴𝑥

‖
‖

2

=
‖
‖
Σ𝑈

𝑇
𝑥
‖
‖

2

and by using that𝜎𝑑(𝐴) ≤ 𝜎𝑖(𝐴)

for every 𝑖 = 1, … , 𝑑. Hence we can write

‖
‖
Σ𝑈

𝑇
𝑥
‖
‖

2

=

𝑑

∑

𝑖=1

𝜎𝑖(𝐴)
2
⟨𝑢𝑖, 𝑥⟩

2

≥ 𝜎𝑑(𝐴)
2

𝑑

∑

𝑖=1

⟨𝑢𝑖, 𝑥⟩
2

= 𝜎𝑑(𝐴)
2
‖𝑥‖

2

.

8

2 | PRELIMINARIES

2.2.1 Best approximation in the Frobenius norm
Let us take another look at expression (2.2). Suppose that 𝑘 ≤ 𝑟 is an integer. We

define

𝐴𝑘 ∶=

𝑘

∑

𝑖=1

𝜎𝑖𝑢𝑖𝑣
𝑇

𝑖
, (2.3)

the matrix obtained by the truncation of the sum (2.2) in the 𝑘
th

parcel. Note

that rank(𝐴𝑘) = 𝑘.

Fact 18. The matrix 𝐴𝑘 is the orthogonal projection of 𝐴 to the subspace spanned by the

first 𝑘 left singular vectors 𝑢1, … , 𝑢𝑘.

This can be seen by making 𝑈
(𝑘)

∈ ℝ
𝑑×𝑘

the matrix with columns 𝑢1, … , 𝑢𝑘 and verifying

that 𝑈
(𝑘)
(𝑈

(𝑘)
)
𝑇
𝐴 = 𝐴𝑘.

Fact 19. The matrix 𝐴𝑘 is a best rank 𝑘 approximation of 𝐴 in the Frobenius norm, that is,

for any matrix 𝐵 ∈ ℝ
𝑑×𝑛

with rank at most 𝑘 we have

‖𝐴 − 𝐴𝑘‖𝐹 ≤ ‖𝐴 − 𝐵‖𝐹 . (2.4)

Fact 19 follows from Fact 18 and from span(𝑈
(𝑘)
) being a best-fit subspace of dimen-

sion 𝑘. More details and proofs can be found in Blum, Hopcroft, and Kannan (2020,

Chap. 3, Sec 5).

The matrix 𝐴𝑘 is a best rank 𝑘 approximation not only in the Frobenius norm, but also

on any unitarily invariant norm. See Horn and Johnson (2013).

2.2.2 Finding the SVD in polynomial time
The singular value decomposition is useful in practice because it can be found in

polynomial time. Some algorithms find just the singular values, while others find the

pairs of singular values and singular vectors (either right or left). Here we present a naive

algorithm that finds pairs of singular values and left singular vectors by reducing this

problem to finding pairs of eigenvalues and eigenvectors.

Fact 20. Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix of rank 𝑟 . The first 𝑟 eigenvalues 𝜆1, … , 𝜆𝑟 of the matrix 𝐴𝐴
𝑇

are the square of the singular values 𝜎
2

1
, … , 𝜎

2

𝑟
of 𝐴, and the remaining eigenvalues are zero.

The eigenvectors associated with the 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 eigenvalues are the left singular vectors associated

with the corresponding singular value.

Proof. Let 𝑈Σ𝑉
𝑇

be a singular value decomposition of 𝐴. Then

𝐴𝐴
𝑇
= 𝑈Σ𝑉

𝑇
𝑉Σ𝑈

𝑇
= 𝑈Σ

2
𝑈

𝑇
.

Since the columns 𝑢1, … , 𝑢𝑟 of 𝑈 are orthonormal, we have that for all 𝑖 = 1, … , 𝑟

𝐴𝐴
𝑇
𝑢𝑖 = 𝑈Σ

2
𝑈

𝑇
𝑢𝑖 = 𝜎

2

𝑖
𝑢𝑖,

2.3 | THE JOHNSON-LINDENSTRAUSS LEMMA

9

hence 𝑢𝑖 is an eigenvector of 𝐴𝐴
𝑇

associated with 𝜎
2

𝑖
. It follows that the space spanned by

the eigenvectors associated with 𝜆𝑖 = 𝜎
2

𝑖
is the same as the left singular vectors associated

with the singular value 𝜎𝑖.

If we complete the set 𝑢1, … , 𝑢𝑟 to an orthonormal basis of ℝ
𝑑
, we can see that for

all 𝑖 = 𝑟 + 1, … , 𝑑

𝐴𝐴
𝑇
𝑢𝑖 = 𝑈Σ

2
𝑈

𝑇
𝑢𝑖 = 0,

which means that the remaining eigenvalues are zero and the null-space of 𝐴𝐴
𝑇

is equal

to the null-space of 𝑈 . ■

The fact above shows us that finding singular values and vectors can be reduced to the

problem of finding eigenvalues and eigenvectors, therefore a simple algorithm to find the

SVD of a matrix 𝐴 is, assuming 𝑑 ≤ 𝑛, to compute 𝐴𝐴
𝑇

and then find its eigen-pairs, which

can be done in time 𝑂(𝑑
3
) (Pan, Chen, Zheng, et al., 1999). Note that the whole process

takes time 𝑂(𝑛𝑑
2
). For simplicity we will assume that the SVD can be computed exactly

and in time 𝑂(𝑛𝑑
2
).

The method we presented here to compute the SVD is not what is used in practice,

since it may have rounding problems and other issues. A discussion about this topic can

be found in Trefethen and Bau (1997, Lecture 31).

Fact 20 let us derive some useful relations between the SVD, the Frobenius norm, and

the trace function.

Fact 21. For any matrix 𝐴 ∈ ℝ
𝑑×𝑛

, we have

‖𝐴‖
2

𝐹
= Tr(𝐴𝐴

𝑇
) =

𝑑

∑

𝑖=1

𝜆(𝐴𝐴
𝑇
) =

𝑑

∑

𝑖=1

𝜎
2
(𝐴).

2.3 The Johnson-Lindenstrauss Lemma
The Johnson-Lindenstrauss Lemma (Johnson and Lindenstrauss, 1984) is the follow-

ing surprising result.

Theorem 22 (Johnson-Lindenstrauss Lemma). There exists a constant 𝜅 such that for any

set 𝐴 of 𝑛 points in ℝ
𝑑
, any 𝜀 ∈ (0, 1) fixed and all integers 𝑟 ≥ 𝜅𝜀

−2
log 𝑛 there exists a linear

function 𝑓 ∶ ℝ
𝑑
→ ℝ

𝑟
such that for every pair 𝑥, 𝑦 ∈ 𝐴 we have

(1 − 𝜀)‖𝑥 − 𝑦‖
2
≤ ‖𝑓 (𝑥) − 𝑓 (𝑦)‖

2
≤ (1 + 𝜀)‖𝑥 − 𝑦‖

2
. (2.5)

Intuitively, the theorem says that a space of dimension 𝑂(𝜀
−2
log 𝑛) is enough to repre-

sent 𝑛 points such that their pairwise Euclidean distances are “almost” preserved
1
. The

functions from this theorem are also used for efficient data storage and for speeding

up algorithms with exponential run-time complexity on the dimension (Achlioptas,

2003).

1
Note that the inequalities in (2.5) imply (1 − 𝜀)‖𝑥 − 𝑦‖ ≤ ‖𝑓 (𝑥) − 𝑓 (𝑦)‖ ≤ (1 + 𝜀)‖𝑥 − 𝑦‖.

10

2 | PRELIMINARIES

Most proofs of Theorem 22 rely on the probabilistic method. We draw a random

function from some distribution in the space of linear functions, and bound the probability

for this function to satisfy the theorem. If this probability is positive then there exists

at least one function that satisfies Theorem 22. A relevant distribution is given by the

following lemma, usually called random projection lemma.

Lemma 23 (Random projection lemma). Suppose 𝑇 ∈ ℝ
𝑟×𝑑

is a random matrix where each

entry 𝑡𝑖𝑗 of 𝑇 is an independent random variable that assumes values uniformly in {+1, −1}.

Let 𝑆 ∈ ℝ
𝑟×𝑑

be defined as

𝑆 =

1

√

𝑟

𝑇 .

Then for all 𝑣 ∈ ℝ
𝑑

and 𝜀 ∈ (0, 1) we have

ℙ [‖𝑆𝑣‖
2
> (1 + 𝜀)‖𝑣‖

2

] < 𝑒
−𝑟𝜀

2
/12

,

ℙ [‖𝑆𝑣‖
2
< (1 − 𝜀)‖𝑣‖

2

] < 𝑒
−𝑟𝜀

2
/12

.

For now on we will call random 𝑟 × 𝑑 matrices where each entry is an independent uni-

form {+1, −1} random variable Johnson-Lindenstrauss matrix, and we will call random 𝑟 × 𝑑

matrices where each entry is an independent uniform {+1/

√

𝑟, −1/

√

𝑟} random variable

normalized Johnson-Lindenstrauss matrix. For example, in Lemma 23 the matrix 𝑇 is a

Johnson-Lindenstrauss matrix and the matrix 𝑆 is a normalized Johnson-Lindenstrauss

matrix.

The proof of Lemma 23 can be found in Achlioptas (2003, Sec. 5). But the idea behind

it is the following: if we look at the square of each coordinate of the vector 𝑇 𝑣, we will note

that its mean is equal to ‖𝑣‖
2
. Thus the random variable ‖𝑆𝑣‖

2
is the sum of independent

random variables with mean ‖𝑣‖
2
. This means that we can apply a Chernoff-like bound to

obtain the result.

Proof of Theorem 22. Let 𝑟 be a positive integer and let 𝑆 ∈ ℝ
𝑟×𝑑

be a normalized Johnson-

Lindenstrauss matrix. Define 𝑓 ∶ ℝ
𝑑
→ ℝ

𝑟
as 𝑓 (𝑥) = 𝑆𝑥 . To prove that this functions

works, we need to show that it avoids the following bad events:

‖𝑓 (𝑥 − 𝑦)‖
2
= ‖𝑓 (𝑥) − 𝑓 (𝑦)‖

2
> (1 + 𝜀)‖𝑥 − 𝑦‖

2

and

‖𝑓 (𝑥 − 𝑦)‖
2
= ‖𝑓 (𝑥) − 𝑓 (𝑦)‖

2
< (1 − 𝜀)‖𝑥 − 𝑦‖

2
.

By Lemma 23 we have that for every pair of points 𝑥, 𝑦 ∈ 𝐴 the probability that each

of the above bad events happen is at most 𝑒
−𝑟𝜀

2
/12

.

By the union bound the probability that, for at least one pair of points, at least one of

the bad events happens is

ℙ [∃𝑥, 𝑦 ∶
|
|
‖𝑓 (𝑥) − 𝑓 (𝑦)‖

2
− ‖𝑥 − 𝑦‖

2|
|
> 𝜀‖𝑥 − 𝑦‖

2

] < 2𝑛
2
𝑒
−𝑟𝜀

2
/12

. (2.6)

2.3 | THE JOHNSON-LINDENSTRAUSS LEMMA

11

Fix 𝜅 = 37. If 𝑟 ≥ 37𝜀
−2
log 𝑛 then

𝑒
−𝑟𝜀

2
/12

≤

1

𝑛
37/12

,

thus we can bound expression (2.6) with

2𝑛
2
𝑒
−𝑟𝜀

2
/12

≤ 2𝑛
2

1

𝑛
37/12

< 1.

We conclude that the probability in (2.6) is strictly smaller than one, therefore there

exists at least one function 𝑓 that avoids the bad events for all pairs of points. ■

Remark: The proof we presented here is not optimal in the constant 𝜅. Achlioptas (2003)

uses a slightly modified bound on the probability of the random projection lemma (but with

the same random matrix) and obtains the following bound for 𝑟 :

𝑟 ≥

4 + 2𝛽

𝜀
2
/2 − 𝜀

3
/3

log 𝑛,

where 𝛽 can assume any positive value. Also the author states that the probability of a

matrix randomly chosen by Lemma 23 to satisfy Theorem 22 is 1 − 𝑛
−𝛽

. Therefore for

all 𝛿 ∈ (0, 1), if 𝛽 = 2 log(1/𝛿) ≥ log(1/𝛿)/ log 𝑛, then the probability of success will

be at least 1 − 𝛿.

The distribution defined in Lemma 23 is not the only distribution with that property.

We can prove a result similar to Lemma 23 if we instead use random matrices where each

entry is an independent normalized Gaussian, or a sparser random matrix where each

entry is a random variable that is zero with probability 2/3, is

√

3/𝑟 with probability 1/6

and −

√

3/𝑟 with probability 1/6 (see Achlioptas, 2003, Theorem 1.1).

Definition 24 (Johnson-Lindenstrauss Transform). Let 𝜀 ∈ (0, 1) and 𝛿 ∈ (0, 1) be fixed.

Suppose that 𝑟 < 𝑑 are positive integers and that 𝑑,𝑟 is a probability distribution over the

space of linear functions with domain ℝ
𝑑

and codomain ℝ
𝑟
. We say that 𝑑,𝑟 is a Johnson-

Lindenstrauss Transform with parameters 𝜀, 𝛿, and 𝑛 or 𝐽 𝐿𝑇 (𝜀, 𝛿, 𝑛) for short if for any

set 𝐴 ⊂ ℝ
𝑑

of 𝑛 points with probability at least 1 − 𝛿 we have that a function 𝑓 drawn

from 𝑑,𝑟 satisfies for every pair 𝑥, 𝑦 ∈ 𝐴

(1 − 𝜀)‖𝑥 − 𝑦‖
2
≤ ‖𝑓 (𝑥) − 𝑓 (𝑦)‖

2
≤ (1 + 𝜀)‖𝑥 − 𝑦‖

2
.

Note that if 𝑑,𝑟 is a 𝐽 𝐿𝑇 (𝜀, 𝛿, 𝑛), then 𝑑,𝑟 is also a 𝐽 𝐿𝑇 (𝜀, 𝛿, 𝑛
′
) for all positive 𝑛

′
≤ 𝑛.

For convenience we will abuse the notation and define random matrices as if they were a

probability distribution over linear functions and also as if they were linear functions.

Definition 25. Fix 𝜀 ∈ (0, 1) and 𝛿 ∈ (0, 1). Suppose that 𝑟 < 𝑑 is a positive integer. We say

that a random matrix 𝑆 is a Johnson-Lindenstrauss Transform with parameters 𝜀, 𝛿, and 𝑛

or 𝐽 𝐿𝑇 (𝜀, 𝛿, 𝑛) for short if for any set 𝐴 ⊂ ℝ
𝑑

of 𝑛 points with probability at least 1 − 𝛿 for

12

2 | PRELIMINARIES

every pair 𝑥, 𝑦 ∈ 𝐴 we have

(1 − 𝜀)‖𝑥 − 𝑦‖
2
≤ ‖𝑆𝑥 − 𝑆𝑦‖

2
≤ (1 + 𝜀)‖𝑥 − 𝑦‖

2
.

Note that a 𝑟 × 𝑑 normalized Johnson-Lindenstrauss matrix is a 𝐽 𝐿𝑇 (𝜀, 𝛿, 𝑛) for

some 𝑟 = 𝑂(𝜀
−2
log(1/𝛿) log 𝑛).

2.3.1 Consequences of the Johnson and Lindenstrauss Lemma
Theorem 22 has interesting and useful consequences. The Johnson-Lindenstrauss

Transform not only “almost” preserves distances between points in a finite set, but also

“almost” preserves structures such as angles between points in a finite set.

Corollary 26. Let 𝜀 ∈ (0, 1) and 𝛿 ∈ (0, 1) be fixed. If 𝑓 is drawn from a 𝐽 𝐿𝑇 (𝜀, 𝛿, 𝑛 + 1)

then for any 𝐴 ⊂ ℝ
𝑑

set of 𝑛 points, with probability at least 1 − 𝛿 for all 𝑥, 𝑦 ∈ 𝐴 we have

⟨𝑥, 𝑦⟩ − 𝜀‖𝑥‖‖𝑦‖ ≤ ⟨𝑓 (𝑥), 𝑓 (𝑦)⟩ ≤ ⟨𝑥, 𝑦⟩ + 𝜀‖𝑥‖‖𝑦‖. (2.7)

Proof. Let 𝐴
′
= 𝐴 ∪ {0}. Since 𝑓 is drawn from a 𝐽 𝐿𝑇 (𝜀, 𝛿, 𝑛 + 1) and 0 ∈ 𝐴

′
, we have that

for all 𝑥, 𝑦 ∈ 𝐴
′

(1 − 𝜀)‖𝑥 − 𝑦‖
2
≤ ‖𝑓 (𝑥) − 𝑓 (𝑦)‖

2
≤ (1 + 𝜀)‖𝑥 − 𝑦‖

2
, (2.8)

and

(1 − 𝜀)‖𝑥 + 𝑦‖
2
≤ ‖𝑓 (𝑥) + 𝑓 (𝑦)‖

2
≤ (1 + 𝜀)‖𝑥 + 𝑦‖

2
. (2.9)

Inequality (2.8) follows the definition of 𝑓 . The proof that 𝑓 also satisfies inequality (2.9)

can be found in Fact 60 in Appendix A.

Inequalities (2.7) are true for 𝑥 or 𝑦 = 0. Suppose that 𝑥, 𝑦 ∈ 𝐴
′

are not the null vector.

Let us prove the case when ‖𝑥‖ = ‖𝑦‖ = 1. By the parallelogram rule in real inner product

spaces, we have

4 ⟨𝑓 (𝑥), 𝑓 (𝑦)⟩ = ‖𝑓 (𝑥) + 𝑓 (𝑦)‖
2
− ‖𝑓 (𝑥) − 𝑓 (𝑦)‖

2

≤ (1 + 𝜀)‖𝑥 + 𝑦‖
2
− (1 − 𝜀)‖𝑥 − 𝑦‖

2
from definition of 𝐽 𝐿𝑇 (𝜀, 𝛿, 𝑛 + 1).

Now using that the Euclidean norm is induced by the inner product, we have

4 ⟨𝑓 (𝑥), 𝑓 (𝑦)⟩ ≤ (1 + 𝜀)(‖𝑥‖
2
+ ‖𝑦‖

2
+ 2 ⟨𝑥, 𝑦⟩) − (1 − 𝜀)(‖𝑥‖

2
+ ‖𝑦‖

2
− 2 ⟨𝑥, 𝑦⟩).

After rearranging and cancelling some terms we obtain

4 ⟨𝑓 (𝑥), 𝑓 (𝑦)⟩ ≤ 4 ⟨𝑥, 𝑦⟩ + 4𝜀.

For the case in which ‖𝑥‖ or ‖𝑦‖ is not equal to one, we can use the linearity of 𝑓 and

2.3 | THE JOHNSON-LINDENSTRAUSS LEMMA

13

apply the same argument to

‖𝑥‖‖𝑦‖
⟨

𝑓
(

𝑥

‖𝑥‖)
, 𝑓

(

𝑦

‖𝑦‖)⟩

to obtain (2.7). The lower bound argument is similar. ■

A useful result that is not directly derived from the Johnson and Lindenstrauss Lemma

but from the random projection lemma is the following result fromAlon, Gibbons, Matias,

and Szegedy (2002).

Lemma 27. Let 𝜀 ∈ (0, 1) be fixed and let 𝑆 ∈ ℝ
⌈𝜀

−2
⌉×𝑑

be a normalized Johnson-Lindenstrauss

matrix. Then for every 𝑥, 𝑦 ∈ ℝ
𝑑

we have

𝔼 [⟨𝑆𝑥, 𝑆𝑦⟩] = ⟨𝑥, 𝑦⟩

and

Var [⟨𝑆𝑥, 𝑆𝑦⟩] ≤ 2𝜀
2
‖𝑥‖

2

‖𝑦‖
2

.

A proof for Lemma 27 can be found in the appendix A. We will use this lemma and the

corollary above it to prove a result about approximations for matrix multiplication.

Lemma 28 (Sarlós, 2006). Let 𝐴 ∈ ℝ
𝑛×𝑑

and 𝐵 ∈ ℝ
𝑑×𝑚

be matrices, and let 𝜀 ∈ (0, 1) be

fixed. The following statements are true:

1. If a matrix 𝑆 is a 𝐽 𝐿𝑇 (𝜀, 𝛿, 𝑛 + 𝑚 + 1) then with probability at least 1 − 𝛿 we have

‖
‖
𝐴𝐵 − 𝐴𝑆

𝑇
𝑆𝐵

‖
‖𝐹

≤ 𝜀 ‖𝐴‖
𝐹
‖𝐵‖

𝐹
.

2. If a matrix 𝑆 ∈ ℝ
⌈𝜀

−2
⌉×𝑑

is a normalized Johnson-Lindenstrauss matrix then

𝔼 [𝐴𝑆
𝑇
𝑆𝐵] = 𝐴𝐵

and

𝔼
[

‖
‖
𝐴𝐵 − 𝐴𝑆

𝑇
𝑆𝐵

‖
‖

2

𝐹]
≤ 2𝜀

2
‖𝐴‖

2

𝐹
‖𝐵‖

2

𝐹
,

where the mean 𝔼 [𝑋] of a random matrix 𝑋 is the matrix where the entry 𝔼 [𝑋]
𝑖𝑗

is 𝔼 [𝑋𝑖𝑗].

Proof. We will begin with item 1. Let 𝑎𝑖 be the 𝑖
th

row of 𝐴 and 𝑏𝑖 be the 𝑖
th

column of 𝐵.

The entry in the 𝑖
th

column and 𝑗
th

row of the matrix 𝐴𝐵−𝐴𝑆
𝑇
𝑆𝐵 is ⟨𝑎𝑖, 𝑏𝑗⟩−⟨𝑆𝑎𝑖, 𝑆𝑏𝑗⟩. If

we consider the set 𝐶 = {𝑎1, … , 𝑎𝑛, 𝑏1, … , 𝑏𝑚}, by Corollary 26 we have that with probability

at least 1 − 𝛿

|
|
|
⟨𝑎𝑖, 𝑏𝑗⟩ − ⟨𝑆𝑎𝑖, 𝑆𝑏𝑗⟩

|
|
|
≤ 𝜀 ‖𝑎𝑖‖

‖
‖
𝑏𝑗
‖
‖
, (2.10)

14

2 | PRELIMINARIES

and by applying the definition of Frobenius norm we have

‖
‖
𝐴𝐵 − 𝐴𝑆

𝑇
𝑆𝐵

‖
‖

2

𝐹
=

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

(⟨𝑎𝑖, 𝑏𝑗⟩ − ⟨𝑆𝑎𝑖, 𝑆𝑏𝑗⟩)

2

≤

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

𝜀
2
‖𝑎𝑖‖

2
‖𝑏𝑗 ‖

2

= 𝜀
2
‖𝐴‖

2

𝐹
‖𝐵‖

2

𝐹
,

finishing the proof of item 1.

For item 2, note that from Lemma 27 we have that

𝔼 [⟨𝑆𝑎𝑖, 𝑆𝑏𝑗⟩] = ⟨𝑎𝑖, 𝑏𝑗⟩

and thus 𝔼 [𝐴𝑆
𝑇
𝑆𝐵] = 𝐴𝐵. Further,

2𝜀
2
‖𝑎𝑖‖

2
‖𝑏𝑗 ‖

2
≥ Var [⟨𝑆𝑎𝑖, 𝑆𝑏𝑗⟩] by Lemma 27

= 𝔼
[(⟨

𝑎𝑖, 𝑏𝑗⟩ − ⟨𝑆𝑎𝑖, 𝑆𝑏𝑗⟩)

2

]
by variance definition.

By applying the Frobenius norm definition in the same way we did for item 1 we

conclude that 𝔼 [
‖
‖
𝐴𝐵 − 𝐴𝑆

𝑇
𝑆𝐵

‖
‖

2

𝐹
] ≤ 2𝜀

2
‖𝐴‖

2

𝐹
‖𝐵‖

2

𝐹
. ■

Combining the first statement of Lemma 28 with the fact that an 𝑟 × 𝑑 normalized

Johnson-Lindenstrauss matrix is a 𝐽 𝐿𝑇 (𝜀, 𝛿, 𝑚 + 𝑛 + 1) for some 𝑟 = 𝑂(𝜀
−2
log(1/𝛿) log(𝑚 + 𝑛 + 1))

give an algorithm to accelerate matrix multiplication. Usually the time complexity to

compute 𝐴𝐵 naively is 𝑂(𝑚𝑛𝑑), but by computing 𝐴 ∶= 𝐴𝑆
𝑇

and 𝐵 ∶= 𝑆𝐵 first, and then

computing 𝐴𝐵 takes time 𝑂((𝑚𝑛 + 𝑑𝑚 + 𝑑𝑛)𝜀
−2
log(1/𝛿) log(𝑚 + 𝑛 + 1)) and give us a

matrix that with probability at least 1 − 𝛿 is close to 𝐴𝐵 in the Frobenius norm.

15

Chapter 3

The (𝓁
2

2
,)-clustering problem

Let  be a non-empty family of non-empty sets of ℝ
𝑑

and let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix.

The (𝓁
2

2
,)-clustering problem in ℝ

𝑑
is to find a set 𝐶 ∈  that minimizes dist

2

(𝐴, 𝐶). We

say that 𝐴 an instance of the problem. The sets 𝐶 ∈  are called solutions. We say that a

solution 𝐶
∗

is an optimal solution if dist
2

(𝐴, 𝐶
∗
) ≤ dist

2

(𝐴, 𝐶) for every 𝐶 ∈ . Note that it

is possible to have multiple distincts optimal solutions. When the instance 𝐴 is implicit or

is known from the context, we will call the value dist
2

(𝐴, 𝐶) cost of 𝐶. For example, if 𝐶
∗

is an optimal solution then the cost of 𝐶
∗

is less than or equal to the cost of every other

possible solution.

This problem is a general formulation for clustering problems under 𝓁
2

2
metric. We will

state some examples of known clustering problems that fit this formulation.

𝑘-means clustering
The 𝑘-means clustering problem is to find a set 𝐶 of 𝑘 distinct points {𝑐1, … , 𝑐𝑘} called

centers such that dist
2

(𝐴, {𝑐1, … , 𝑐𝑘}) is minimized.

Figure 3.1: An example of 3-means clustering in ℝ
2
. The grey dots form the instance and the red dots

are the centers.

16

3 | THE (𝓁
2

2
,)-CLUSTERING PROBLEM

Note that 𝑘-means clustering problem is an (𝓁
2

2
, (

ℝ
𝑑

𝑘
))-clustering, where

(

ℝ
𝑑

𝑘)
∶= {𝑊 ⊂ ℝ

𝑑
∶ |𝑊 | = 𝑘}.

It is known that this problem is NP-hard for 𝑘 = 2 (see Aloise, Deshpande, Hansen,

and Popat, 2009). If the dimension 𝑑 of the space is constant, then 𝑘-means can be solved

in 𝑂(𝑛
𝑑𝑘+1

) time (see Inaba, Katoh, and Imai, 1994).

Best-fit 𝑗-subspace

Remembering definition 15, the best-fit linear 𝑗-subspace problem in ℝ
𝑑

is to find a

linear subspace 𝑉 of dimension 𝑗 of ℝ
𝑑

that minimizes dist
2

(𝐴, 𝑉). There is also a variant

of this problem that consist of searching for affine subspaces of dimension 𝑗 instead.

Figure 3.2: Example of best-fit affine 1-subspace. The red line is one solution.

We can see that best-fit linear 𝑗-subspace is a (𝓁
2

2
,)-clustering by taking  to be

the set 𝑗 of all subspaces of dimension 𝑗 . Best-fit affine 𝑗-subspace also fits the general

description by taking  to be the set 𝑗 of all affine subspaces of dimension 𝑗 .

Projective clustering
Let 𝑘 and 𝑗 be positive integers with 𝑗 < 𝑑. The linear 𝑗-subspace 𝑘-clustering problem is

to find a set of 𝑘 distinct linear 𝑗-subspaces {𝑉1, … , 𝑉𝑘} of ℝ
𝑑

that minimizes dist
2

(𝐴,⋃
𝑘

𝑖=1
𝑉𝑖).

This problem and a variant with affine subspaces instead of linear are both known as

projective clustering.

We can see that both affine and linear 𝑗-subspace 𝑘-clustering problems are a particular

case of the (𝓁
2

2
,)-clustering problem where

 ∶=

{
𝑘

⋃

𝑖=1

𝑉𝑖 ∶ {𝑉1, … , 𝑉𝑘} ∈
(

𝑗

𝑘)

}

3.1 | LOW DIMENSIONAL REPRESENTATION

17

for the linear case. For the affine case we just exchange (
𝑗

𝑘
) for (

𝑗

𝑘
). This problem is

a generalization of the two previous problems. Note that affine 0-subspace 𝑘-clustering

problem is equivalent to 𝑘-means clustering problem and that linear 𝑗-subspace 1-clustering

problem is equivalent to the best-fit linear 𝑗-subspace problem.

Figure 3.3: Example of linear 1-subspace 2-clustering in ℝ
2
. The dots form the instance. The green

dots are closer to the green subspace, and the red dots are closer to the red subspace.

A result from Megiddo and Tamir (1981) states that the problem of deciding if 𝑘 lines

are enough to cover a set of points in ℝ
2

is NP-complete. This implies that affine 𝑗-sub-

space 𝑘-clustering problem in ℝ
2

for 𝑗 = 1 and 𝑑 = 2 is NP-hard to approximate for any

multiplicative approximation factor, since any 𝛼-approximation would decide the problem

of covering points with lines.

3.1 Low dimensional representation

The three problems stated above have an interesting property: Let 𝐴 ∈ ℝ
𝑑×𝑛

be an

instance, but suppose that the rank of 𝐴 is 𝑑
′
< 𝑑. We can define another (𝓁

2

2
,′

)-clustering

problem in ℝ
𝑑
′

and another instance 𝐴
′
∈ ℝ

𝑑
′
×𝑛

such that any solution for 𝐴
′
can be mapped

to a solution for 𝐴, and an optimal solution for 𝐴
′

has the same cost as an optimal solution

of 𝐴. We will show this for the best-fit linear 𝑗-subspace problem, but the proof strategy is

the same for the other two problems.

Theorem 29 (Low dimensional representation). Let 𝐴 ∈ ℝ
𝑑×𝑛

be an instance of best-fit

linear 𝑗-subspace problem in ℝ
𝑑
, and suppose that 𝑗 < rank(𝐴) = 𝑑

′
< 𝑑. Then there exists

an instance 𝐴
′
∈ ℝ

𝑑
′
×𝑛

of best-fit linear 𝑗-subspace problem in ℝ
𝑑
′

that satisfies the following:

1. There exists an isometric embedding 𝑓 ∶ ℝ
𝑑
′

→ ℝ
𝑑

such that if 𝐶
′

is a solution for 𝐴
′

then 𝐶 ∶= 𝑓 (𝐶
′
) is a solution for 𝐴 and

dist
2

(𝐴
′
, 𝐶

′
) = dist

2

(𝐴, 𝐶).

2. For every solution 𝐶 for 𝐴 there exists a solution 𝐶
′

for 𝐴
′

such that

dist
2

(𝐴
′
, 𝐶

′
) ≤ dist

2

(𝐴, 𝐶).

18

3 | THE (𝓁
2

2
,)-CLUSTERING PROBLEM

Proof. Since rank(𝐴) = 𝑑
′
, there exists a matrix 𝑈 ∈ ℝ

𝑑×𝑑
′

with orthonormal columns such

that span(𝑈) = span(𝐴). We claim that

𝐴
′
∶= 𝑈

𝑇
𝐴

is our desired instance of best-fit 𝑗-subspace problem in ℝ
𝑑
′

.

Let us start with the proof of item 1. Since span(𝑈) = span(𝐴), and since 𝑈 has

orthonormal columns, by Fact 8 we have that 𝑈𝑈
𝑇
𝐴 is an orthogonal projection to span(𝑈),

therefore 𝑈𝑈
𝑇
𝐴 = 𝜋span(𝑈)(𝐴) = 𝜋span(𝐴)(𝐴) = 𝐴, which implies that 𝑈𝐴

′
= 𝐴. From this

fact it would be natural to define the isometric embedding 𝑓 as 𝑓 (𝑥) = 𝑈𝑥 . The function 𝑓

is an isometric embedding because it maps the canonical base of ℝ
𝑑
′

into the orthonormal

columns of 𝑈 .

Now we will show that this definition of 𝐴
′

and 𝑓 works. Let 𝐶
′

be a solution for 𝐴
′
.

Remember that

dist
2

(𝐴
′
, 𝐶

′
) = ‖𝐴

′
− 𝜋𝐶

′(𝐴
′
)‖
2

𝐹
= ∑

𝑎
′
∈𝐴

′

‖𝑎
′
− 𝜋𝐶

′(𝑎
′
)‖
2
.

Let 𝐵
′
∈ ℝ

𝑑
′
×𝑗

be a matrix with orthonormal columns that span 𝐶
′
. For every vec-

tor 𝑥
′
∈ ℝ

𝑑
′

we have

𝜋𝐶
′(𝑥

′
) = 𝐵

′
𝐵
′𝑇
𝑥
′

and we also have that

𝜋𝐶
′(𝐴

′
) = 𝐵

′
𝐵
′𝑇
𝐴

′
.

To find 𝐶 ∶= 𝑓 (𝐶
′
), it suffices to find a basis 𝐵 ∈ ℝ

𝑑×𝑗
for 𝐶. For each column 𝑏

′

𝑖
of 𝐵

′

we define the 𝑖
th

column of 𝐵 as 𝑏𝑖 ∶= 𝑓 (𝑏
′

𝑖
), so we have

𝐵 ∶= 𝑈𝐵
′
.

The columns of 𝐵 form a set of orthonormal vectors: we just need to see that (𝑈𝐵
′
)
𝑇
𝑈𝐵

′
is

equal to the identity matrix.

Now we use the fact that the Frobenius norm is invariant under unitary transformations

to show that

dist
2

(𝐴
′
, 𝐶

′
) = ‖𝐴

′
− 𝜋𝐶

′(𝐴
′
)‖
2

𝐹

= ‖𝐴
′
− 𝐵

′
𝐵
′𝑇
𝐴

′
‖
2

𝐹
by the definition of projection,

= ‖𝑈𝐴
′
− 𝑈𝐵

′
𝐵
′𝑇
𝐴

′
‖
2

𝐹
by the unitary invariant.

Now using that 𝐴 = 𝑈𝐴
′

and 𝐵 = 𝑈𝐵
′

we obtain

‖𝑈𝐴
′
− 𝑈𝐵

′
𝐵
′𝑇
𝐴

′
‖
2

𝐹
= ‖𝐴 − 𝐵𝐵

′𝑇
𝐴

′
‖
2

𝐹
.

3.1 | LOW DIMENSIONAL REPRESENTATION

19

Noting that 𝑈
𝑇
𝑈 equals the 𝑑

′
× 𝑑

′
identity matrix, we have

‖𝐴 − 𝐵𝐵
′𝑇
𝐴

′
‖
2

𝐹
= ‖𝐴 − 𝐵𝐵

′𝑇
𝑈

𝑇
𝑈𝐴

′
‖
2

𝐹
.

Using that 𝐵
𝑇
= (𝑈𝐵

′
)
𝑇
= 𝐵

′𝑇
𝑈

𝑇
and that 𝐴 = 𝑈𝐴

′
, we have

‖𝐴 − 𝐵𝐵
′𝑇
𝑈

𝑇
𝑈𝐴‖

2

𝐹
= ‖𝐴 − 𝐵𝐵

𝑇
𝐴‖

2

𝐹
.

Finally, we conclude that

dist
2

(𝐴
′
, 𝐶

′
) = ‖𝐴 − 𝐵𝐵

𝑇
𝐴‖

2

𝐹
= ‖𝐴 − 𝜋𝐶(𝐴)‖

2

𝐹
= dist

2

(𝐴, 𝐶).

Before proving item 2 we will need the following fact:

Fact 30. Let 𝐴 ∈ ℝ
𝑑×𝑛

and 𝐵 ∈ ℝ
𝑑×𝑗

be matrices. Suppose that 𝐵 has orthonormal columns.

Then

‖𝐴‖
2

𝐹
≥ ‖𝐵

𝑇
𝐴‖

2

𝐹
.

Proof. Let 𝐵
′
∈ ℝ

𝑑×𝑑
be an orthogonal matrix that agrees with 𝐵 in the first 𝑗 columns.

Since 𝐵
′

is orthogonal, 𝐵
′𝑇

is orthogonal, hence we have

‖𝐴‖
2

𝐹
= ‖𝐵

′𝑇
𝐴‖

2

𝐹
≥ ‖𝐵

𝑇
𝐴‖

2

𝐹
,

since in the Frobenius norm we add the square of the entries, and in ‖𝐵
𝑇
𝐴‖

2

𝐹
we are adding

fewer entries. ■

Now we are ready to prove item 2. Let 𝐶 be a solution for 𝐴, let 𝐵 ∈ ℝ
𝑑×𝑗

be a matrix with

orthonormal columns that spans 𝐶 and define 𝐵
′
∶= 𝑈

𝑇
𝐵. We claim that 𝐿 ∶= span(𝐵

′
) is

a set in ℝ
𝑑
′

such that dist
2

(𝐴
′
, 𝐿) ≤ dist

2

(𝐴, 𝐶).

From the fact 30 we have

dist
2

(𝐴, 𝐶) = ‖𝐴 − 𝐵𝐵
𝑇
𝐴‖

2

𝐹
≥ ‖𝑈

𝑇
𝐴 − 𝑈

𝑇
𝐵𝐵

𝑇
𝐴‖

2

𝐹
.

Now, using that 𝐴 = 𝑈𝐴
′
, we have

‖𝑈
𝑇
𝐴 − 𝑈

𝑇
𝐵𝐵

𝑇
𝐴‖

2

𝐹
= ‖𝐴

′
− 𝑈

𝑇
𝐵(𝑈

𝑇
𝐵)

𝑇
𝐴

′
‖
2

𝐹

= ‖𝐴
′
− 𝐵

′
𝐵
′𝑇
𝐴

′
‖
2

𝐹
by the definition of 𝐵

′
.

Note that for all 𝑥 ∈ ℝ
𝑑
′

the vector 𝐵
′
𝐵
′𝑇
𝑥 lies in 𝐿, which implies

‖𝑥 − 𝐵
′
𝐵
′𝑇
𝑥‖ ≥ ‖𝑥 − 𝜋𝐿(𝑥)‖,

since the orthogonal projection is the closest vector of 𝐿 to 𝑥 . So we have

‖𝐴
′
− 𝐵

′
𝐵
′𝑇
𝐴

′
‖
2

𝐹
≥ ‖𝐴

′
− 𝜋𝐿(𝐴

′
)‖
2

𝐹
= dist

2

(𝐴
′
, 𝐿).

20

3 | THE (𝓁
2

2
,)-CLUSTERING PROBLEM

We conclude that dist
2

(𝐴
′
, 𝐿) ≤ dist

2

(𝐴, 𝐶). The final step is to note that 𝐿 is a subspace

with dimension at most 𝑗 . If the dimension of 𝐿 is 𝑗 , we are done. If not, we can find any

base of 𝐿 and complete it such that it spans a subspace 𝐶
′

of dimension 𝑗 . Since 𝐿 ⊂ 𝐶
′
, we

have

dist
2

(𝐴
′
, 𝐿) ≥ dist

2

(𝐴
′
, 𝐶

′
).

We have found the solution 𝐶
′

for 𝐴
′

with the desired property. ■

Corollary 31. Under the same hypothesis of Theorem 29, if 𝐶
′∗

is an optimal solution for 𝐴
′

then 𝑓 (𝐶
′∗
) is an optimal solution for 𝐴, where 𝑓 is the isometric embedding given by (1) in

Theorem 29.

Proof. Using Theorem 29 (1), we have that

dist
2

(𝐴, 𝑓 (𝐶
′∗
)) = dist

2

(𝐴
′
, 𝐶

′∗
).

Suppose that 𝐶
∗

is an optimal solution for 𝐴. Then we have that

dist
2

(𝐴, 𝐶
∗
) ≤ dist

2

(𝐴, 𝑓 (𝐶
′∗
)).

Using Theorem 29 (2), there exists a solution 𝐶
′

for 𝐴
′

such that

dist
2

(𝐴
′
, 𝐶

′
) ≤ dist

2

(𝐴, 𝐶
∗
).

Using that 𝐶
′∗

is optimal, we have

dist
2

(𝐴
′
, 𝐶

′∗
) ≤ dist

2

(𝐴
′
, 𝐶

′
).

Joining the above inequalities we arrive at

dist
2

(𝐴, 𝑓 (𝐶
′∗
)) = dist

2

(𝐴
′
, 𝐶

′∗
) ≤ dist

2

(𝐴, 𝐶
∗
) ≤ dist

2

(𝐴, 𝑓 (𝐶
′∗
)),

and we have that dist
2

(𝐴, 𝑓 (𝐶
′∗
)) = dist

2

(𝐴, 𝐶
∗
) which implies that 𝑓 (𝐶

′∗
) is an optimal

for 𝐴 too. ■

An analogous of Theorem 29 can be proved for the 𝑘-means problem and for the

projective clustering problem.

3.2 Sketch definition and dimension reduction
Now that we defined our problem, we can start to think about how to approximate

it.

Definition 32. Let 𝐴 ∈ ℝ
𝑑×𝑛

be an instance of the (𝓁
2

2
,)-clustering problem and let 𝛼 ≥ 1 be

a real. Let 𝐶
∗

be an optimal solution for 𝐴. We say that a solution 𝐶 is an 𝛼-approximation

3.2 | SKETCH DEFINITION AND DIMENSION REDUCTION

21

for 𝐴 if

dist
2

(𝐴, 𝐶) ≤ 𝛼 dist
2

(𝐴, 𝐶
∗
).

The real 𝛼 is called approximation factor.

There are multiple strategies we can try to find an approximation for the (𝓁
2

2
,)-clus-

tering problem. For example, instead of the family , we could consider just a subset of .

Another approach is to find an instance 𝐴 that is a “sketch” of the original instance 𝐴

such that it would be “easier” to solve for the sketch, and any “good” approximation for 𝐴

should give a good approximation for 𝐴.

In this section we will focus on the second approach. What would be a suitable and pre-

cise definition of sketch for an instance? Given the idea in Theorem 29 we require that the

sketch must have low rank and that its optimal solutions must be an (1 + 𝜀)-approximation

for 𝐴.

Obtaining low rank representations of 𝐴 can be achieved by projecting it orthogonally

to a low dimension subspace, and hence a candidate for the sketch would be 𝐴 ∶= 𝐵𝐵
𝑇
𝐴

for some matrix 𝐵 with orthonormal columns. To control the cost and guarantee that the

sketch will give a good approximation, what naturally is desired is that 𝐴 has the following

property for ever 𝐶 ∈ :

(1 − 𝜀) dist
2

(𝐴, 𝐶) ≤ dist
2

(𝐴, 𝐶) ≤ (1 + 𝜀) dist
2

(𝐴, 𝐶). (3.1)

But the following fact shows us that this definition needs to be adjusted:

Fact 33. Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix, let 𝑉 be a subspace of dimension 𝑗 and let 𝐶 ⊂ 𝑉 be a

non-empty set. Suppose that 𝐵 ∈ ℝ
𝑑×𝑗

has orthonormal columns that spans 𝑉 . Then

dist
2

(𝐴, 𝐶) = ‖𝐴 − 𝐵𝐵
𝑇
𝐴‖

2

𝐹
+ dist

2

(𝐵𝐵
𝑇
𝐴, 𝐶).

Proof. Apply the Pythagoras’ Theorem to each point 𝑎 ∈ 𝐴. Since 𝐶 ⊂ 𝑉 , we have that

(dist(𝑎, 𝐶))
2
= ‖𝑎 − 𝐵𝐵

𝑇
𝑎‖

2
+ (dist(𝐵𝐵

𝑇
𝑎, 𝐶))

2
.

Adding this expression for all points we obtain what we desire. ■

The fact above implies that the cost of all solutions in the space spanned by the columns

of 𝐵 for 𝐴 will have an extra additive term of ‖𝐴 − 𝐵𝐵
𝑇
𝐴‖

2

𝐹
compared to the cost for 𝐴. This

means that the usual definition in expression (3.1) will not usually work. Thus we give the

following adjusted definition of sketch:

Definition 34 (𝜀-sketch for (𝓁
2

2
,)-clustering). Let𝐴 ∈ ℝ

𝑑×𝑛
be an instance of the (𝓁

2

2
,)-clus-

tering problem and let 𝜀 ∈ (0, 1) be fixed. We say that a matrix 𝐴 ∈ ℝ
𝑑×𝑛

is an 𝜀-sketch for 𝐴

if there exists a non-negative constant Δ = Δ(𝐴,, 𝜀) such that for every solution 𝐶 ∈  we

have

(1 − 𝜀) dist
2

(𝐴, 𝐶) ≤ dist
2

(𝐴, 𝐶) + Δ ≤ (1 + 𝜀) dist
2

(𝐴, 𝐶). (3.2)

22

3 | THE (𝓁
2

2
,)-CLUSTERING PROBLEM

Note that 𝐴 is an 𝜀-sketch for 𝐴 for all 𝜀 ∈ (0, 1) and Δ = 0. It is straightforward to

deduce that for any 𝛼 ≥ 1 and 𝜀 ∈ (0, 1/3), a solution that is an 𝛼-approximation for the

sketch 𝐴 will be an 𝛼(1 + 3𝜀)-approximation
1

for 𝐴. The proof is given later, in the proof

of Fact 59. The argument is similar to the proof of Corollary 31.

Definition 34 is still strong in the sense that we impose the inequalities (3.2) for

every 𝐶 ∈ . But to just obtain an (1 + 𝜀)-approximation we can require less from 𝐴:

Definition 35 (weak 𝜀-sketch for (𝓁
2

2
,)-clustering). Let 𝐴 ∈ ℝ

𝑑×𝑛
be an instance of

the (𝓁
2

2
,)-clustering problem and let 𝜀 ∈ (0, 1) be fixed. We say that 𝐴 ∈ ℝ

𝑑×𝑛
is a

weak 𝜀-sketch for 𝐴 if for every optimal solution 𝐶
∗

for 𝐴 and any optimal solution 𝐶
∗

for 𝐴 we have

dist
2

(𝐴, 𝐶
∗
) ≤ (1 + 𝜀) dist

2

(𝐴, 𝐶
∗
). (3.3)

Note that if 𝐴 is an 𝜀-sketch for 𝐴, then it is a weak 3𝜀-sketch if 𝜀 is small enough.

The result of Corollary 31 together with the definition of sketch give us the concept of

approximation by dimension reduction. Our task now will be to find low-rank sketches

of 𝐴, since solving the low dimensional sketch intuitively should be more efficient. In later

chapters we will show that, indeed, solving the problems in low dimension is easier for

linear projective clustering.

Definition 36 (Dimension reduction scheme). A dimension reduction scheme for

the (𝓁
2

2
,)-clustering problem in ℝ

𝑑
is any scheme that takes an instance 𝐴 ∈ ℝ

𝑑×𝑛
and

a parameter 𝜀 ∈ (0, 1) as input and outputs another instance 𝐴 ∈ ℝ
𝑑×𝑛

such that rank(𝐴) < 𝑑

and 𝐴 is either an 𝜀-sketch for 𝐴 or a weak 𝜀-sketch for 𝐴.

We will present a dimension reduction scheme for the general case of (𝓁
2

2
,)-clustering.

The main tools we will use for the dimension reduction scheme will be the Johnson-Lin-

denstrauss Transform and the SVD.

Remark: Most of the dimension reduction schemes we will present outputs an instance 𝐴

with rank that depends on the family  and on the value of 𝜀. This means that, although in

principle any value in the range of (0, 1) is possible for 𝜀, we cannot have 𝜀 arbitrary close to

zero, as it could happen that the resulting rank of 𝐴 would be higher than the dimension 𝑑 of

the space and we would not have a dimension reduction scheme. For example, if a scheme

for 𝑘-means clustering in ℝ
𝑑

outputs a sketch of rank ⌈𝜀
−2
𝑘⌉, then it is clear that we must

have 𝜀 ≥

√

𝑘/𝑑, else the rank of the sketch would be at least 𝑑.

1
Note that if 𝜀 ∈ (0, 1/3) then (1 + 𝜀)/(1 − 𝜀) ≤ 1 + 3𝜀.

23

Chapter 4

Approximation by dimension
reduction

In this chapter we will present the main results of approximation by dimension reduc-

tion for the (𝓁
2

2
,)-clustering problem. In Section 4.1 we will study a weak 𝜀-sketch for

the best-fit linear subspace problem developed by Sarlós (2006). In Section 4.2 we will

present sufficient conditions for a low rank matrix to be an 𝜀-sketch for the (𝓁
2

2
,)-clus-

tering problem. This result was first published by Feldman, Schmidt, and Sohler (2020)

using the singular value decomposition, but Pratap and Sen (2018) improved it with the

weak 𝜀-sketch of Sarlós.

4.1 Random dimension reduction scheme for the
best-fit linear 𝑗-subspace problem

We will return to the best-fit linear 𝑗-subspace problem introduced in Section 2.2,

where we talked about how it is associated with the singular value decomposition. We

showed that the SVD can be computed in time 𝑂(𝑛𝑑
2
) for any instance 𝐴 ∈ ℝ

𝑑×𝑛
, assuming

without loss of generality 𝑑 ≤ 𝑛.

But if 𝑗 ≪ min{𝑛, 𝑑}, we can find an approximation for the best-fit linear 𝑗-subspace

problem more efficiently. Sarlós developed a randomized algorithm based on the John-

son-Lindenstrauss lemma that outputs a matrix 𝐴 of rank 𝑟 = 𝑂(𝑗/𝜀 + 𝑗 log 𝑗) that with

probability at least 1/2 is a weak 𝜀-sketch for 𝐴.

24

4 | APPROXIMATION BY DIMENSION REDUCTION

Theorem 37 (Sarlós, 2006). Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix, let 𝑗 < min{𝑑, 𝑛} be an integer and

let 𝜀 ∈ (0, 1) be fixed. There exists an integer 𝑟 = Θ(𝜀
−1
𝑗 + 𝑗 log 𝑗) such that if 𝑆 is a 𝑟 × 𝑛

normalized Johnson-Lindenstrauss matrix then with probability at least 1/2 we have

‖𝐴 − 𝜋
𝐴𝑆

𝑇 (𝐴)𝑗 ‖𝐹 ≤ (1 + 𝜀)‖𝐴 − 𝐴𝑗 ‖𝐹 .

Computing 𝜋
𝐴𝑆

𝑇 (𝐴)𝑗 can be done with two readings of the matrix 𝐴 and in

time 𝑂(𝑛𝑑𝑟 + (𝑛 + 𝑑)𝑟
2
).

In other words, the theorem says that with probability at least 1/2 the matrix 𝜋
𝐴𝑆

𝑇 (𝐴)

is a weak 3𝜀-sketch for 𝐴 for the problem of finding the best-fit linear 𝑗-subspace. A

simple algorithm for computing 𝜋
𝐴𝑆

𝑇 (𝐴) is to generate an appropriate matrix 𝑆, compute

the multiplication 𝐴𝑆
𝑇
, find a basis for span(𝐴𝑆

𝑇
) and project 𝐴 orthogonally using this

basis.

The time complexity analysis of this algorithm is straightforward. The product 𝐴𝑆
𝑇

can

be done in time 𝑂(𝑛𝑑𝑟) and requires one read of 𝐴. To realize the orthogonal projection, it

is sufficient to apply the Gram-Schmidt process to find an orthonormal basis of span(𝐴𝑆
𝑇
).

This can be done in time𝑂(𝑑𝑟
2
). Finally, we read the matrix𝐴 again to realize the projection,

which can be done in time 𝑂(𝑛𝑑𝑟). We end up with an 𝑟 × 𝑛 matrix, and thus calculating

the SVD of this matrix will take time 𝑂(𝑛𝑟
2
). Therefore the time needed to find 𝜋

𝐴𝑆
𝑇 (𝐴)𝑗

is 𝑂(𝑛𝑑𝑟 + (𝑛 + 𝑑)𝑟
2
).

To prove Theorem 37, we are going to need more tools and results.

Preliminary results for Theorem 37
Another property of the Johnson-Lindenstrauss Transform is about “almost” preserving

subspaces. We can use these distributions to map any subspace 𝐿 of ℝ
𝑑

of dimension 𝑗

into a space of dimension 𝑂(𝑗 log(𝑗/𝜀)/𝜀
2
) and “almost” preserve the norm of every vector

of 𝐿 with high probability. This seems counter-intuitive, since Theorem 22 is for finite sets

only. But note that the dimension of the codomain space is higher than the dimension

of 𝐿. It must be, else there would always be non-null vectors of 𝐿 in the kernel of the

mapping.

Lemma 38 (Sarlós, 2006). Let 𝐿 ⊂ ℝ
𝑑

be a subspace of dimension 𝑗 , and let 𝜀 ∈ (0, 1) and

𝛿 ∈ (0, 1) be fixed. If 𝑓 is drawn from some 𝐽 𝐿𝑇 (𝜀/4, 𝛿, 𝑂((3𝑗/𝜀)
𝑗
)), then with probability at

least 1 − 𝛿 for all 𝑣 ∈ 𝐿 we have

(1 − 𝜀)‖𝑣‖ ≤ ‖𝑓 (𝑣)‖ ≤ (1 + 𝜀)‖𝑣‖.

We say that such an 𝑓 is a subspace 𝜀-embedding.

It follows that an 𝑟 × 𝑑 normalized Johnson-Lindenstrauss Transform is a subspace 𝜀-em-

bedding for some 𝑟 = 𝑂(𝜀
−2
𝑗 log(𝑗/𝜀)). The intuition of the proof of this lemma is to

consider a finite set 𝐻
′

such that every point in the unit sphere is close enough to a point

of 𝐻
′

and use Theorem 22 in 𝐻
′
.

Definition 39 (𝛿-fine grid). Fix 𝛿 ∈ (0, 1). Let 𝑒1, … , 𝑒𝑗 be the vectors of the canonical base

4.1 | RANDOM DIMENSION REDUCTION SCHEME FOR THE BEST-FIT LINEAR 𝐽 -SUBSPACE PROBLEM

25

of ℝ
𝑗
. The set

𝐻 ∶=

{

ℎ ∈ ℝ
𝑗
∶ ∀𝑖 = 1, … , 𝑗 , ∀𝑐𝑖 ∈ ℤ ∩ [−𝛿

−1
, 𝛿

−1
], ℎ =

𝑗

∑

𝑖=1

𝛿𝑐𝑖𝑒𝑖

}

.

is called 𝛿-fine grid of dimension 𝑗 .

1

1

Figure 4.1: An example of a 1/5-fine grid of dimension 2. The red dots are the elements of the grid.

Proof of Lemma 38. To facilitate the calculations, we will use 𝜀 instead of 𝜀/4 in the hy-

pothesis. When the proof is done the result will follow by re-scaling 𝜀.

Since 𝑓 is linear we have that ‖𝑓 (0)‖ = 0, and for every non-null 𝑥 ∈ 𝐿 we have

that 𝑓 (𝑥) = ‖𝑥‖𝑓 (𝑥/‖𝑥‖), thus we just need to prove the lemma for the case ‖𝑥‖ = 1.

Let 𝐵 ∈ ℝ
𝑑×𝑗

with orthonormal columns 𝑏1, … , 𝑏𝑗 that spans 𝐿. Let 𝛿 = min{

√

𝜀/𝑗, 𝜀/

√

𝑗}

and let 𝐻 be a 𝛿-fine grid of dimension 𝑗 . Fix 𝐻
′
= {𝐵ℎ|ℎ ∈ 𝐻}. Note that |𝐻

′
| = 𝑂((3𝑗/𝜀)

𝑗
).

We will apply Corollary 26 in the set 𝐻
′
⋃ {𝑏1, … , 𝑏𝑗 }. Note that any vector of 𝐿 can be

written as 𝐵𝑤 = ∑
𝑗

𝑝=1
𝛼𝑝𝑏𝑝, for some 𝑤 = (𝛼1, … , 𝛼𝑗) ∈ ℝ

𝑗
, therefore for any 𝐵𝑤 ∈ 𝐿

‖𝑓 (𝐵𝑤)‖
2
= ⟨𝑓 (𝐵𝑤), 𝑓 (𝐵𝑤)⟩

=

𝑗

∑

𝑝=1

𝑗

∑

𝑞=1

⟨𝛼𝑝𝑓 (𝑏𝑝), 𝛼𝑞𝑓 (𝑏𝑞)⟩ by linearity

≤

𝑗

∑

𝑝=1

𝑗

∑

𝑞=1

|𝛼𝑝||𝛼𝑞 | (⟨𝑏𝑝, 𝑏𝑞⟩ + 𝜀) by Corollary 26.

Note that ⟨𝑏𝑝, 𝑏𝑞⟩ is zero for 𝑝 ≠ 𝑞. This means that

‖𝑓 (𝐵𝑤)‖
2
≤ ‖𝑤‖

2
+ 𝜀

𝑗

∑

𝑝=1

𝑗

∑

𝑞=1

|𝛼𝑝||𝛼𝑞 | = ‖𝑤‖
2
+ 𝜀‖𝑤‖

2

1
, (4.1)

26

4 | APPROXIMATION BY DIMENSION REDUCTION

where the norm 1 of a vector 𝑤 is given by

‖𝑤‖1 =

𝑗

∑

𝑖=1

𝛼𝑖.

Remember Fact 13, which states that if a matrix 𝐵 has orthonormal columns,

then ‖𝑤‖ = ‖𝐵𝑤‖. So if ‖𝑤‖1 is small enough, we have that ‖𝑓 (𝐵𝑤)‖ is close to ‖𝐵𝑤‖.

Now let 𝑣 ∈ ℝ
𝑗

with ‖𝑣‖ = 1. Each coordinate of 𝑣 is in the interval [−1, 1]. This

implies that there exists an ℎ ∈ 𝐻 such that each coordinate of ℎ differs in at most 𝛿 from 𝑣

and ‖ℎ‖ ≤ 1. Therefore

‖𝑣 − ℎ‖ ≤ 𝛿

√

𝑗 ≤ 𝜀 (4.2)

and

‖𝑣 − ℎ‖1 ≤ 𝛿𝑗 ≤

√

𝜀. (4.3)

By the triangle inequality in ‖(𝑣 − ℎ) + ℎ‖ it follows

1 − 𝜀 ≤ ‖ℎ‖ = ‖𝐵ℎ‖.

Since 𝑓 is drawn from some 𝐽 𝐿𝑇 (𝜀, 𝛿, 𝑂((3𝑗/𝜀)
𝑗
)), we can assume

(1 − 𝜀)
2
≤ (1 − 𝜀)‖𝐵ℎ‖ ≤ ‖𝑓 (𝐵ℎ)‖ ≤ (1 + 𝜀)‖𝐵ℎ‖ = (1 + 𝜀). (4.4)

Let 𝑥 be an arbitrary vector of the unity sphere of 𝐿. Then exists an 𝑣 ∈ ℝ
𝑗

with ‖𝑣‖ = 1

such that 𝑥 = 𝐵𝑣. Let 𝑤 = 𝑣 − ℎ and apply inequality (4.1). We obtain

‖𝑓 (𝐵(𝑣 − ℎ))‖
2
≤ ‖𝑣 − ℎ‖

2
+ 𝜀‖𝑣 − ℎ‖

2

1
.

Applying inequalities (4.2) and (4.3) we have

‖𝑣 − ℎ‖
2
+ 𝜀‖𝑣 − ℎ‖

2

1
≤ 𝜀

2
+ 𝜀

2
= 2𝜀

2
. (4.5)

By linearity, triangle inequality and the right-hand side of inequality (4.4) we have

‖𝑓 (𝐵𝑣)‖ ≤ ‖𝑓 (𝐵(𝑣 − ℎ))‖ + ‖𝑓 (𝐵ℎ)‖ ≤

√

2𝜀 + 1 + 𝜀 ≤ 1 + 3𝜀.

The lower bound can be obtained by applying the triangle inequality in the vec-

tor ‖𝑓 (𝐵ℎ)‖ = ‖𝑓 (𝐵𝑣) + 𝑓 (𝐵(ℎ − 𝑣))‖ and using the left-hand side of inequality (4.4) to get

‖𝑓 (𝐵𝑣)‖ ≥ ‖𝑓 (𝐵ℎ)‖ − ‖𝑓 (𝐵(𝑣 − ℎ))‖ ≥ (1 − 𝜀)
2
−

√

2𝜀 ≥ 1 − 4𝜀,

since for 𝜀 ∈ (0, 1) we have 1 − 2𝜀 ≤ (1 − 𝜀)
2
. Re-scaling the 𝜀 finishes the proof. ■

Corollary 40 (Sarlós, 2006). Let 𝑈 ∈ ℝ
𝑑×𝑗

be a matrix with orthonormal columns and

let 𝜀 ∈ (0, 1) and 𝛿 ∈ (0, 1) be fixed. Suppose that 𝑆 is an 𝑟 × 𝑑 normalized Johnson-Linden-

4.1 | RANDOM DIMENSION REDUCTION SCHEME FOR THE BEST-FIT LINEAR 𝐽 -SUBSPACE PROBLEM

27

strauss matrix for some 𝑟 = 𝑂(𝜀
−2
𝑗 log(𝑗/𝜀) log(1/𝛿)). Then with probability at least 1 − 𝛿

for all 𝑖 = 1, … , 𝑗 we have

|1 − 𝜎𝑖(𝑆𝑈)| ≤ 𝜀.

Proof. From Lemma 38 we have that the function 𝑣 ↦ 𝑆𝑣 is a subspace 𝜀-embedding

for span(𝑈). So for all norm-one vector 𝑣 of ℝ
𝑑

1 − 𝜀 = (1 − 𝜀) ‖𝑈𝑣‖ ≤ ‖𝑆𝑈𝑣‖ ≤ (1 + 𝜀) ‖𝑈𝑣‖ = 1 + 𝜀.

The result follows by the definition of singular value. ■

The next preliminary result is an application of Theorem 22 and subspaces 𝜀-embed-

dings in linear 𝓁2 regression.

Definition 41 (linear 𝓁2 regression). Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix and let 𝑏 ∈ ℝ
𝑑

be fixed. The

linear 𝓁2 regression problem is to find at least one vector 𝑥
∗
∈ ℝ

𝑛
such that for all 𝑥 ∈ ℝ

𝑛
we

have

‖𝑏 − 𝐴𝑥
∗
‖ ≤ ‖𝑏 − 𝐴𝑥‖ .

In other words, we want to find the linear combination of the columns of 𝐴 that is the

closest to 𝑏 in the Euclidean norm.

The idea to find 𝑥
∗

is straightforward. Remember that the set of all linear combinations

of the columns of 𝐴 is a subspace of ℝ
𝑑
, and the point of this subspace that is closest to 𝑏

is the orthogonal projection of 𝑏. Let 𝑈Σ𝑉
𝑇

be a SVD of 𝐴. The projection of 𝑏 to span(𝐴)

can be written as 𝑈𝑈
𝑇
𝑏. This means that we can reformulate the problem as to find a

vector 𝑥 ∈ ℝ
𝑛

such that

𝐴𝑥 = 𝑈𝑈
𝑇
𝑏.

We know that such an 𝑥 exists since 𝑈𝑈
𝑇
𝑏 lies in the column span of 𝐴. Note that if

we rewrite 𝑈𝑈
𝑇

as

𝑈𝑈
𝑇
= 𝑈ΣΣ

−1
𝑈

𝑇
= 𝑈Σ𝑉

𝑇
𝑉Σ

−1
𝑈

𝑇

we obtain

𝐴𝑥 = 𝐴 (𝑉Σ
−1
𝑈

𝑇

) 𝑏,

thus a vector that satisfy the above expression is

𝑥
∗
∶= 𝑉Σ

−1
𝑈

𝑇
𝑏.

Define 𝐴
†
∶= 𝑉Σ

−1
𝑈

𝑇
. We call the matrix 𝐴

†
the Moore-Penrose generalized inverse

of 𝐴. It follows that a solution can be written as 𝑥
∗
= 𝐴

†
𝑏.

Remark: This generalized inverse has some interesting properties. By the above discussion

we can see that the orthogonal projection of a vector 𝑏 to span(𝐴) is 𝐴𝐴
†
𝑏. Also it is a direct

calculation to show that 𝐴
𝑇
𝐴𝐴

†
= 𝐴

𝑇
and 𝐴𝐴

†
𝐴 = 𝐴.

The normalized Johnson-Lindenstrauss matrix can be used to find an approximation

for the linear 𝓁2 regression problem.

28

4 | APPROXIMATION BY DIMENSION REDUCTION

Theorem 42 (Sarlós, 2006). Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix and let 𝑏 ∈ ℝ
𝑑

and 𝜀 ∈ (0, 1)

be fixed. Let  = min𝑥∈ℝ
𝑛 ‖𝑏 − 𝐴𝑥‖ = ‖𝑏 − 𝐴𝑥

∗
‖, where 𝑥

∗
= 𝐴

†
𝑏. Let 𝑆 ∈ ℝ

𝑠×𝑑
be a nor-

malized Johnson-Lindenstrauss matrix for some positive integer 𝑠 = 𝑂(𝜀
−1
𝑛 log 𝑛). Finally,

let ̃ = min𝑥∈ℝ
𝑛 ‖𝑆𝑏 − 𝑆𝐴𝑥‖ = ‖𝑆𝑏 − 𝑆𝐴𝑥

∗
‖, where 𝑥

∗
= (𝑆𝐴)

†
𝑆𝑏. Then with probability at

least 1/3 we have

‖𝑏 − 𝐴𝑥
∗
‖ ≤ (1 + 𝜀).

Note that 𝑆𝑏 and 𝑆𝐴 act similarly to a weak 𝜀-sketch, since its optimal solution is an

approximation for the original problem.

Proof. Let 𝐴 = 𝑈Σ𝑉
𝑇

be a SVD of 𝐴. Suppose that 𝑟 = rank(𝐴). Since span(𝑈) = span(𝐴),

there exists vectors 𝛼 and 𝛽 ∈ ℝ
𝑟

such that

𝐴𝑥
∗
= 𝑈𝛼

and

𝐴𝑥
∗
− 𝐴𝑥

∗
= 𝑈𝛽.

Let 𝑤 ∈ ℝ
𝑑

be a vector such that 𝑤 = 𝑏 − 𝐴𝑥
∗
. Note that 𝑤 is orthogonal to span(𝐴)

and that ‖𝑤‖ = . Therefore

‖𝑏 − 𝐴𝑥
∗
‖
2

= ‖𝑏 − 𝐴𝑥
∗
+ 𝐴𝑥

∗
− 𝐴𝑥

∗
‖
2

(4.6)

= ‖𝑤 − 𝑈𝛽‖
2

(4.7)

= 2
+ ‖𝛽‖

2
(4.8)

This means that in order to bound ‖𝑏 − 𝐴𝑥
∗
‖ we need to bound ‖𝛽‖. Observe that

𝑆𝑈(𝛼 + 𝛽) = 𝑆𝐴𝑥
∗
, (4.9)

and from the definition of 𝑥
∗

we have

𝑆𝐴𝑥
∗
= 𝑆𝐴(𝑆𝐴)

†
𝑆𝑏 = 𝜋𝑆𝐴(𝑆𝑏).

Since 𝑏 = 𝑤 + 𝐴𝑥
∗
= 𝑤 + 𝑈𝛼 we have

𝜋𝑆𝐴(𝑆𝑏) = 𝜋𝑆𝐴(𝑆𝑈𝛼 + 𝑆𝑤).

Since span(𝐴) = span(𝑈), the orthogonal projector 𝜋𝑆𝐴 is equal to 𝜋𝑆𝑈 , which implies

𝜋𝑆𝐴(𝑆𝑈𝛼 + 𝑆𝑤) = 𝜋𝑆𝑈 (𝑆𝑈𝛼 + 𝑆𝑤) = 𝑆𝑈𝛼 + 𝜋𝑆𝑈 (𝑆𝑤).

From equation (4.9), we have

𝑆𝑈𝛽 = 𝜋𝑆𝑈 (𝑆𝑤).

Remember that we can write 𝜋𝑆𝑈 (𝑆𝑤) as (𝑆𝑈)(𝑆𝑈)
†
𝑆𝑤. Using the property of the

4.1 | RANDOM DIMENSION REDUCTION SCHEME FOR THE BEST-FIT LINEAR 𝐽 -SUBSPACE PROBLEM

29

(a) The vector 𝑤 (green) is orthogonal to span(𝐴).

(b) The vector 𝑆𝑤 (green) may not be orthogonal to span(𝑆𝐴). Its orthogonal

projection equals 𝑆𝑈𝛽 (orange).

Figure 4.2: Visualization of the relation between 𝑆𝑈𝛽 and 𝑆𝑤.

Moore-Penrose generalized inverse that for any matrix 𝐴 we have 𝐴
𝑇
𝐴𝐴

†
= 𝐴

𝑇
, we obtain

(𝑆𝑈)
𝑇
𝑆𝑈𝛽 = (𝑆𝑈)

𝑇
𝑆𝑤. (4.10)

Fact 43. There exists some 𝑠 = 𝑂(𝜀
−1
𝑛 log 𝑛) such that with probability at least 2/3 we have

𝜎𝑖((𝑆𝑈)
𝑇
(𝑆𝑈)) = 𝜎

2

𝑖
(𝑆𝑈) ≥

1

√

2

.

Indeed, by choosing the constants of 𝑠 correctly we can apply Corollary 40

with 𝜀
′
= 1 − 2

−1/4
and 𝛿 = 1/3. This fact implies that with probability at least 2/3

‖𝛽‖
2

2

≤
‖
‖
(𝑆𝑈)

𝑇
(𝑆𝑈)𝛽

‖
‖

2

=
‖
‖
𝑈

𝑇
𝑆
𝑇
𝑆𝑤

‖
‖

2

. (4.11)

With the same argument of choosing the constants of 𝑠 correctly, we observe that 𝑆

is also a 𝐽 𝐿𝑇 (

√

𝜀/(2𝑛), 1/3, 𝑛 + 2), and thus we can apply Lemma 28.1 to 𝑈
𝑇

and 𝑤

with 𝜀
′′
=

√

𝜀/(2𝑛) and 𝛿 = 1/3 to conclude that with probability at least 2/3 we have

‖
‖
𝑈

𝑇
𝑆
𝑇
𝑆𝑤

‖
‖

2

=
‖
‖
𝑈

𝑇
𝑤 − 𝑈

𝑇
𝑆
𝑇
𝑆𝑤

‖
‖

2

≤

𝜀

𝑛

‖
‖
𝑈

𝑇 ‖
‖

2

𝐹
‖𝑤‖

2

≤ 𝜀 ‖𝑤‖
2

= 𝜀2
. (4.12)

30

4 | APPROXIMATION BY DIMENSION REDUCTION

Using the union bound in the events (4.11) and (4.12), we have that with probability at

least 1/3

‖𝛽‖
2

≤ 2𝜀2
,

and thus by equation (4.8) we have

‖𝑏 − 𝐴𝑥
∗
‖ ≤

√

1 + 2𝜀 ≤ (1 + 𝜀),

finishing the proof. ■

Now we are ready to prove Theorem 37. Before presenting the full proof, we will first

give an intuition of each step. The proof starts by changing the projector matrix 𝜋
𝐴𝑆

𝑇 to a

weaker one. This will allow us to manipulate the inequality of the theorem and reduce

part of it as a linear 𝓁2 regression problem. We can then use a similar argument of the

proof of Theorem 42 by applying Corollary 40 with 𝛿 = 1/4 and 𝜀 = 1 − 2
−1/4

, requiring

the hypothesis of 𝑟 = Ω(𝑗 log 𝑗). Next we will apply Lemma 28.2, but instead of 𝜀 we will

use

√

𝜀/𝑗 , requiring the hypothesis of 𝑟 = Ω(𝜀/𝑗). This justify the value of Θ(𝜀/𝑗 + 𝑗 log 𝑗)

for 𝑟 .

proof of Theorem 37. Let 𝐴 = 𝑈Σ𝑉
𝑇

be a SVD of 𝐴, and let 𝜌 = rank(𝐴). We can as-

sume that 𝑗 < 𝜌, otherwise 𝐴𝑗 = 𝐴. Let 𝑃 = (𝜋
𝐴𝑆

𝑇 (𝐴𝑗))(𝜋𝐴𝑆
𝑇 (𝐴𝑗))

†
be a projector matrix

to span(𝜋
𝐴𝑆

𝑇 (𝐴𝑗)). Since rank(𝜋
𝐴𝑆

𝑇 (𝐴𝑗)) is at most 𝑗 , and 𝜋
𝐴𝑆

𝑇 (𝐴)𝑗 is a best rank 𝑗 approxi-

mation of 𝜋
𝐴𝑆

𝑇 (𝐴), we have that

‖
‖
𝐴 − 𝜋

𝐴𝑆
𝑇 (𝐴)𝑗

‖
‖

2

𝐹
≤ ‖𝐴 − 𝑃𝐴‖

2

𝐹
.

Now we will bound the value of ‖𝐴 − 𝑃𝐴‖
2

𝐹
. By the unitary invariance of the Frobenius

norm (Fact 13) we have

‖𝐴 − 𝑃𝐴‖
2

𝐹
=
‖
‖
𝑈Σ𝑉

𝑇
− 𝑃𝑈Σ𝑉

𝑇 ‖
‖

2

𝐹
= ‖𝑈Σ − 𝑃𝑈Σ‖

2

𝐹
.

Let 𝑈
(𝑗)

∈ ℝ
𝑑×𝑗

be the matrix that agrees with the first 𝑗 columns of 𝑈

and 𝑈
(𝜌−𝑗)

∈ ℝ
𝑑×(𝜌−𝑗)

be the matrix that agrees with the last 𝜌 − 𝑗 columns of 𝑈 . Analogously,

let 𝑉
(𝑗)

and 𝑉
(𝜌−𝑗)

be the matrices that agrees with the first 𝑗 and last 𝜌 − 𝑗 columns of 𝑉 ,

respectively.

Let Σ
(𝑗)

∈ ℝ
𝑗×𝑗

be the matrix with diagonal elements that agrees with the first 𝑗 elements

of the diagonal of Σ. Let Σ
(𝜌−𝑗)

∈ ℝ
(𝜌−𝑗)×(𝜌−𝑗)

be the diagonal matrix that agrees with the

last 𝜌 − 𝑗 elements of the diagonal of Σ. By Pythagoras’ Theorem we have that

‖𝑈Σ − 𝑃𝑈Σ‖
2

𝐹
=
‖
‖
𝑈

(𝑗)
Σ
(𝑗)

− 𝑃𝑈
(𝑗)
Σ
(𝑗)‖
‖

2

𝐹
+
‖
‖
𝑈

(𝜌−𝑗)
Σ
(𝜌−𝑗)

− 𝑃𝑈
(𝜌−𝑗)

Σ
(𝜌−𝑗)‖

‖

2

𝐹
.

Note that orthogonal projections never increase the norm of vectors. Hence we can

4.1 | RANDOM DIMENSION REDUCTION SCHEME FOR THE BEST-FIT LINEAR 𝐽 -SUBSPACE PROBLEM

31

bound the last term as follows:

‖
‖
𝑈

(𝜌−𝑗)
Σ
(𝜌−𝑗)

− 𝑃𝑈
(𝜌−𝑗)

Σ
(𝜌−𝑗)‖

‖

2

𝐹
=
‖
‖
‖
(𝐼 − 𝑃) (𝑈

(𝜌−𝑗)
Σ
(𝜌−𝑗)

)

‖
‖
‖

2

𝐹

≤
‖
‖
𝑈

(𝜌−𝑗)
Σ
(𝜌−𝑗)‖

‖

2

𝐹
since 𝐼 − 𝑃 is an orthogonal projector

=
‖
‖
𝐴 − 𝐴𝑗

‖
‖

2

𝐹
.

To finish the proof is enough to show that
‖
‖
𝑈

(𝑗)
Σ
(𝑗)

− 𝑃𝑈
(𝑗)
Σ
(𝑗)‖
‖

2

𝐹
≤ 2𝜀

‖
‖
𝐴 − 𝐴𝑗

‖
‖

2

with

probability at least 1/2, since combining it with the previous equations we arrive at

‖𝐴 − 𝑃𝐴𝑗 ‖𝐹 ≤

√

1 + 2𝜀
‖
‖
𝐴 − 𝐴𝑗

‖
‖𝐹

≤ (1 + 𝜀)
‖
‖
𝐴 − 𝐴𝑗

‖
‖𝐹
.

Note that by unitarily invariance we have

‖
‖
𝑈

(𝑗)
Σ
(𝑗)

− 𝑃𝑈
(𝑗)
Σ
(𝑗)‖
‖

2

𝐹
=
‖
‖
𝑈

(𝑗)
Σ
(𝑗)
𝑉
(𝑗)𝑇

− 𝑃𝑈
(𝑗)
Σ
(𝑗)
𝑉
(𝑗)𝑇 ‖

‖

2

𝐹

=
‖
‖
𝐴𝑗 − 𝑃𝐴𝑗

‖
‖

2

𝐹
.

Remember that 𝑃𝐴𝑗 = (𝐴𝑆
𝑇
)(𝐴𝑆

𝑇
)
†
𝐴𝑗 is an orthogonal projection of 𝐴𝑗 to span(𝐴𝑆

𝑇
).

This means that

‖
‖
𝐴𝑗 − 𝑃𝐴𝑗

‖
‖

2

𝐹
≤
‖
‖
𝐴𝑗 − (𝐴𝑆

𝑇
)(𝐴𝑗𝑆

𝑇
)
†
𝐴𝑗
‖
‖

2

𝐹

=
‖
‖
𝐴

𝑇

𝑗
− 𝐴

𝑇

𝑗
(𝑆𝐴

𝑇

𝑗
)
†
(𝑆𝐴

𝑇
)
‖
‖

2

𝐹
.

Let us study the following linear 𝓁2 regression problems: Let 𝑏𝑖 ∈ ℝ
𝑛

denote the 𝑖
th

column of 𝐴
𝑇
, and 𝑏(𝑗),𝑖 the 𝑖

th
column of 𝐴

𝑇

𝑗
. For 𝑖 = 1, … , 𝑑, find 𝑥

∗

𝑖
and 𝑥𝑖

∗

∈ ℝ
𝑑

such that

they minimize

‖
‖
𝑏𝑖 − 𝐴

𝑇

𝑗
𝑥
∗

𝑖

‖
‖

and

‖
‖
𝑆𝑏𝑖 − 𝑆𝐴

𝑇

𝑗
𝑥𝑖

∗‖
‖
.

We know from previous discussions that the minimizers for the first problem are the

orthogonal projections of 𝑏𝑖 to span(𝐴
𝑇

𝑗
), and from the SVD theory they are 𝑏(𝑗),𝑖. From the

proof of Theorem 42 we can define vectors 𝛽1, … , 𝛽𝑑 ∈ ℝ
𝑗

and 𝑤1, … , 𝑤𝑑 ∈ ℝ
𝑛

such that for

all 𝑖 = 1, … , 𝑑 such that

𝑉
(𝑗)
𝛽𝑖 = 𝐴

𝑇

𝑗
𝑥𝑖

∗

− 𝐴
𝑇

𝑗
𝑥
∗

𝑖
= 𝐴

𝑇

𝑗
𝑥𝑖

∗

− 𝑏(𝑗),𝑖,

𝑤𝑖 = 𝑏𝑖 − 𝐴
𝑇

𝑗
𝑥
∗

𝑖
= 𝑏𝑖 − 𝑏(𝑗),𝑖

and

𝑉
(𝑗)𝑇

𝑆
𝑇
𝑆𝑉

(𝑗)
𝛽𝑖 = 𝑉

(𝑗)𝑇
𝑆
𝑇
𝑆𝑤𝑖.

From the results about linear 𝓁2 regression we know that 𝑥𝑖
∗

= (𝑆𝐴
𝑇

𝑗
)
†
𝑆𝑏𝑖. From the

32

4 | APPROXIMATION BY DIMENSION REDUCTION

definition of Frobenius norm and its unitary invariance we can deduce that

𝑑

∑

𝑖=1

‖𝛽𝑖‖
2

=

𝑑

∑

𝑖=1

‖
‖
𝑉
(𝑗)
𝛽𝑖
‖
‖

2

=

𝑑

∑

𝑖=1

‖
‖
𝐴

𝑇

𝑗
(𝑆𝐴

𝑇

𝑗
)
†
𝑆𝑏𝑖 − 𝑏(𝑗),𝑖

‖
‖

2

=
‖
‖
𝐴

𝑇

𝑗
− 𝐴

𝑇

𝑗
(𝑆𝐴

𝑇

𝑗
)
†
𝑆𝐴

𝑇 ‖
‖

2

𝐹
.

Similarly to the argument we used to obtain inequality (4.11), we can take 𝑟 = Ω(𝑗 log 𝑗)

such that it is enough to apply Corollary 40 in the matrix 𝑉
(𝑗)

with 𝛿 = 1/4 and

with 𝜀
′
= 1 − 2

−1/4
, obtaining with probability at least 3/4 that for all 𝑘 = 1,… , 𝑗 we have

2
−1/4

≤ 𝜎𝑘(𝑆𝑉
(𝑗)
),

and hence

1

√

2

≤ 𝜎
2

𝑘
(𝑆𝑉

(𝑗)
) = 𝜎𝑘(𝑉

(𝑗)𝑇
𝑆
𝑇
𝑆𝑉

(𝑗)
).

This implies that with probability at least 3/4 for every vector 𝑦 ∈ ℝ
𝑗

we have

‖𝑦‖
2

2

≤
‖
‖
𝑉
(𝑗)𝑇

𝑆
𝑇
𝑆𝑉

(𝑗)
𝑦
‖
‖

2

, (4.13)

and in particular, for all 𝑖 = 1, … , 𝑑 we have

‖𝛽𝑖‖
2

2

≤
‖
‖
𝑉
(𝑗)𝑇

𝑆
𝑇
𝑆𝑉

(𝑗)
𝛽𝑖
‖
‖

2

=
‖
‖
𝑉
(𝑗)𝑇

𝑆
𝑇
𝑆𝑤𝑖

‖
‖

2

. (4.14)

Now again with an argument similar to the one we used to obtain inequality (4.12),

we bound the following expression:

𝔼

[

𝑑

∑

𝑖−1

‖
‖
𝑉
(𝑗)𝑇

𝑆
𝑇
𝑆𝑤𝑖

‖
‖

2

]

=

𝑑

∑

𝑖=1

𝔼
[

‖
‖
𝑉
(𝑗)𝑇

𝑆
𝑇
𝑆𝑤𝑖

‖
‖

2

]
.

Again taking 𝑟 = Ω(𝑗/𝜀) big enough, we can apply the second statement of Lemma 28

with 𝜀
′
=

√

𝜀/(2𝑗) to (𝑉
(𝑗)
)
𝑇

and 𝑤𝑖, obtaining

𝑑

∑

𝑖=1

𝔼
[

‖
‖
𝑉
(𝑗)𝑇

𝑆
𝑇
𝑆𝑤𝑖

‖
‖

2

]
≤

𝑑

∑

𝑖=1

𝜀 ‖𝑤𝑖‖
2

= 𝜀

𝑑

∑

𝑖=1

‖
‖
𝑏𝑖 − 𝑏(𝑗),𝑖

‖
‖

2

= 𝜀
‖
‖
𝐴

𝑇
− 𝐴

𝑇

𝑗

‖
‖

2

𝐹
. (4.15)

4.2 | FINDING AN 𝜀-SKETCH FOR THE (𝓁
2

2
,)-CLUSTERING PROBLEM

33

Applying Markov Inequality to inequality (4.15) we have that

ℙ

[

𝑑

∑

𝑖=1

‖
‖
𝑉
(𝑗)𝑇

𝑆
𝑇
𝑆𝑤𝑖

‖
‖

2

≥ 4𝜀
‖
‖
𝐴

𝑇
− 𝐴

𝑇

𝑗

‖
‖

2

𝐹
]

≤

∑
𝑑

𝑖=1
𝔼
[

‖
‖
𝑉
(𝑗)𝑇

𝑆
𝑇
𝑆𝑤𝑖

‖
‖

2

]

4𝜀
‖
‖
𝐴

𝑇
− 𝐴

𝑇

𝑗

‖
‖

2

𝐹

≤

𝜀
‖
‖
𝐴

𝑇
− 𝐴

𝑇

𝑗

‖
‖

2

𝐹

4𝜀
‖
‖
𝐴

𝑇
− 𝐴

𝑇

𝑗

‖
‖

2

𝐹

=

1

4

. (4.16)

Finally by using the union bound on equations (4.14) and (4.16), with probability at

least 1/2 we have that

‖
‖
𝑈

(𝑗)
− 𝑃𝑈

(𝑗)
Σ
(𝑗)‖
‖

2

𝐹
≤

𝑑

∑

𝑖=1

‖𝛽𝑖‖
2

≤ 8𝜀
‖
‖
𝐴

𝑇
− 𝐴

𝑇

𝑗

‖
‖

2

𝐹
.

Rescaling 𝜀 give the desired result. ■

With Theorem 37 we have obtained a randomized algorithm to find a weak 𝜀-sketch

for the best-fit linear 𝑗-subspace problem. We will use this result next chapter to present

an algorithm that finds an 𝜀-sketch for the more general (𝓁
2

2
,)-clustering problem.

Remark: The probability of success of Theorem 37 can be boosted to 1−𝛿, for any 𝛿 ∈ (0, 1).

Note that by Fact 10 (Pythagoras’ Theorem) we have

‖𝐴‖
2

𝐹
=
‖
‖
𝐴 − 𝜋

𝐴𝑆
𝑇 (𝐴)𝑗

‖
‖

2

𝐹
+
‖
‖
𝜋
𝐴𝑆

𝑇 (𝐴)𝑗
‖
‖

2

𝐹
,

therefore if we run log
2
(1/𝛿) independent instances of 𝑆 and choose the one that maxi-

mizes
‖
‖
𝜋
𝐴𝑆

𝑇 (𝐴)𝑗
‖
‖

2

𝐹
, we will have a probability of success of 1 − 𝛿. Indeed, for this procedure

to give us a wrong answer, all of the log
2
(1/𝛿) independent instances must yield the wrong

answer, and this happens with probability 2
− log

2
1/𝛿

= 𝛿.

4.2 Finding an 𝜀-sketch for the (𝓁
2

2
,)-clustering

problem
In this section we will present an 𝜀-sketch for the (𝓁

2

2
,)-clustering problem. This result

is a slight improvement on the work of Pratap and Sen, since the authors only dealt

with the case for the projective clustering problem. The only restriction we require on the

family  is in the dimensionality of its elements, as we will define later. Otherwise this

sketch works for any , thus it can be applied for the projective clustering problem and

others.

This sketch was first developed by Feldman, Schmidt, and Sohler, but Pratap and Sen

improved it by applying the weak 𝜀-sketch of Sarlós and using other results from Cohen

et al. (2015).

Definition 44. Let  be a non-empty family of non-empty subsets of ℝ
𝑑

and let 𝑚 ≤ 𝑑 be a

positive integer. We say that  is an 𝑚-dimensional family if for every 𝐶 ∈  there exists a

34

4 | APPROXIMATION BY DIMENSION REDUCTION

linear subspace 𝐿(𝐶) ⊂ ℝ
𝑑

of dimension 𝑚 that contains 𝐶.

For example, in the 𝑘-means clustering problem in ℝ
𝑑

the set  is a 𝑘-dimensional

family if 𝑘 ≤ 𝑑, since for each set 𝐶 of 𝑘 points the subspace spanned by 𝐶 has dimension

at most 𝑘, and thus can be completed to some subspace 𝐿 of dimension 𝑘. Similarly in

the linear 𝑗-subspace 𝑘-clustering problem if 𝑗𝑘 ≤ 𝑑 then the set  is a 𝑗𝑘-dimensional

family.

The main result we are going to present in this section is the following theorem.

Theorem 45 (based on Pratap and Sen, 2018). Let𝐴 ∈ ℝ
𝑑×𝑛

be an instance of the (𝓁
2

2
,)-clus-

tering problem where  is an 𝑚-dimensional family and 𝑚 < min{𝑑, 𝑛}. Let 𝜀 ∈ (0, 1) and

let 𝑠 = ⌈8𝜀
−2
𝑚⌉ be fixed. If a matrix 𝐴

𝑇
∈ ℝ

𝑛×𝑑
is an orthogonal projection of 𝐴

𝑇
to some

subspace of dimension 𝑠 of ℝ
𝑛

and satisfies

‖
‖
‖
𝐴 − 𝐴

‖
‖
‖

2

𝐹

≤
(
1 +

𝜀
2

8)
‖𝐴 − 𝐴𝑠‖

2

𝐹
(4.17)

then 𝐴 is an 𝜀-sketch for 𝐴 with constant Δ = ‖𝐴 − 𝐴𝑠‖
2

𝐹
.

We are going to postpone the proof of Theorem 45, because we need some preliminary

results.

Note that taking 𝐴 = 𝐴𝑠 trivially satisfies equation (4.17) and Theorem 45 hypothesis,

hence 𝐴𝑠 is an 𝜀-sketch for 𝐴. Therefore a simple algorithm for finding an 𝜀-sketch is to

calculate the SVD of 𝐴. But this takes time 𝑂(𝑛𝑑
2
), and as we saw in the previous section

this can be improved with Theorem 37 since it is sufficient to find an approximation of it.

We present the improved algorithm bellow.

Algorithm 1: A randomized dimension reduction scheme for (𝓁
2

2
,)-clustering

when  is 𝑚-dimensional

Input: An instance 𝐴 ∈ ℝ
𝑑×𝑛

and a parameter 𝜀 ∈ (0, 1).

Output: A matrix that with probability at least 1/2 is an 𝜀-sketch for 𝐴.

1 Let 𝑠 ∶= ⌈8𝜀
−2
𝑚⌉ be given by Theorem 45;

2 Let 𝑟 ∶= Θ(𝜀
−2
𝑠 + 𝑠 log 𝑠) be given by Theorem 37;

3 Let 𝑆 ∈ ℝ
𝑟×𝑑

be a normalized Johnson-Lindenstrauss matrix;

4 Compute 𝐴
𝑇
= 𝜋

𝐴
𝑇
𝑆
𝑇 (𝐴

𝑇
)𝑠;

5 Return 𝐴;

The correctness of this algorithm follows directly from Theorem 37 and 45. Theorem 37

guarantees that the matrix 𝐴 computed on line 5 satisfies equation (4.17) with probability at

least 1/2. Theorem 45 guarantees that such an 𝐴 is an 𝜀-sketch for 𝐴. The time complexity

follows from Theorem 37 too, which states that 𝐴 can be computed in time

𝑂(𝑛𝑑𝑟 + (𝑛 + 𝑑)𝑟
2
) = 𝑂(𝑛𝑑(𝑠𝜀

−2
+ 𝑠 log 𝑠) + (𝑛 + 𝑑)(𝜀

−2
𝑠 + 𝑠 log 𝑠)

2
)

= 𝑂(𝑛𝑑(𝜀
−4
𝑚 + (𝜀

−2
𝑚 log(𝜀

−2
𝑚))) + (𝑛 + 𝑑)(𝜀

−8
𝑚

2
+ (𝜀

−4
𝑚

2
log

2

(𝜀
−2
𝑚)))).

The probability of success of this algorithm can be boosted to 1 − 𝛿, for any 𝛿 ∈ (0, 1),

by running log
2
(1/𝛿) independent copies of the matrix 𝑆 and choosing the one that

4.2 | FINDING AN 𝜀-SKETCH FOR THE (𝓁
2

2
,)-CLUSTERING PROBLEM

35

maximizes
‖
‖
𝜋
𝐴
𝑇
𝑆
𝑇 (𝐴

𝑇
)
‖
‖𝐹

, as we saw in the previous section.

To prove Theorem 45 we will require some technical results. The first is a weak triangle

inequality between points and sets. The proof of it is in appendix A.

Lemma 46 (Weak triangle inequality). Let 𝑝, 𝑞 ∈ ℝ
𝑑

be fixed and let 𝐶 ⊂ ℝ
𝑑

be a non-empty

set. For all 𝜀 ∈ (0, 1) we have

|
|
dist

2

(𝑝, 𝐶) − dist
2

(𝑞, 𝐶)
|
|
≤ 𝜀 dist

2

(𝑝, 𝐶) +

2

𝜀

‖𝑝 − 𝑞‖
2

(4.18)

The second result states that for every subspace of dimension 𝑚 the Frobenius norm

of the projection of 𝐴 to this subspace is relatively close to the Frobenius norm of the

projection of 𝐴 to the same subspace.

Lemma 47. Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix and suppose that 𝑚 < min{𝑑, 𝑛} is a positive integer.

Fix 𝜀
′
∈ (0, 1) and 𝑠 = ⌈𝜀

′−1
𝑚⌉. Suppose that 𝐴

𝑇
∈ ℝ

𝑛×𝑑
is a matrix that is an orthogonal

projection of 𝐴
𝑇

to some subspace of dimension 𝑠 of ℝ
𝑛

and satisfies

‖
‖
‖
𝐴 − 𝐴

‖
‖
‖

2

𝐹

≤ (1 + 𝜀
′
) ‖𝐴 − 𝐴𝑠‖

2

𝐹
. (4.19)

For every matrix 𝑋 ∈ ℝ
𝑑×𝑚

with orthonormal columns and matrix 𝑌 ∈ ℝ
𝑑×(𝑑−𝑚)

with

orthonormal columns such that span(𝑌) is the orthogonal complement of span(𝑋) the

following inequalities are true:

0 ≤
‖
‖
𝑋

𝑇
𝐴
‖
‖

2

𝐹
−
‖
‖
‖
𝑋

𝑇
𝐴
‖
‖
‖

2

𝐹

≤ 2𝜀
′ ‖
‖
𝑌
𝑇
𝐴
‖
‖

2

𝐹
(4.20)

and

‖
‖
‖
𝑋𝑋

𝑇
𝐴 − 𝑋𝑋

𝑇
𝐴
‖
‖
‖

2

𝐹

≤ 2𝜀
′ ‖
‖
𝑌
𝑇
𝐴
‖
‖

2

𝐹
. (4.21)

Proof. We will start proving (4.20) by expressing it in the trace function form.

‖
‖
𝑋

𝑇
𝐴
‖
‖

2

𝐹
−
‖
‖
‖
𝑋

𝑇
𝐴
‖
‖
‖

2

𝐹

= Tr(𝐴
𝑇
𝑋𝑋

𝑇
𝐴) − Tr(𝐴

𝑇
𝑋𝑋

𝑇
𝐴).

By the cyclic propriety of the trace function, we have

Tr(𝐴
𝑇
𝑋𝑋

𝑇
𝐴) − Tr(𝐴

𝑇
𝑋𝑋

𝑇
𝐴) = Tr(𝑋𝑋

𝑇
𝐴𝐴

𝑇
) − Tr(𝑋𝑋

𝑇
𝐴𝐴

𝑇
).

The trace function is linear, therefore

Tr(𝑋𝑋
𝑇
𝐴𝐴

𝑇
) − Tr(𝑋𝑋

𝑇
𝐴𝐴

𝑇
) = Tr(𝑋𝑋

𝑇
(𝐴𝐴

𝑇
− 𝐴𝐴

𝑇
)).

Let 𝑀 = 𝐴𝐴
𝑇
− 𝐴𝐴

𝑇
. We will show that 𝑀 is equal to (𝐴 − 𝐴)(𝐴 − 𝐴)

𝑇
, and thus is

36

4 | APPROXIMATION BY DIMENSION REDUCTION

positive semi-definite. Note that

𝑀 = 𝐴𝐴
𝑇
− 𝐴𝐴

𝑇
= 𝐴𝐴

𝑇
− (𝐴 − 𝐴 + 𝐴)(𝐴 − 𝐴 + 𝐴)

𝑇

= 𝐴𝐴
𝑇
− (𝐴 − (𝐴 − 𝐴))(𝐴

𝑇
− (𝐴 − 𝐴)

𝑇
)

= 𝐴𝐴
𝑇
− 𝐴𝐴

𝑇
+ 𝐴(𝐴 − 𝐴)

𝑇
+ (𝐴 − 𝐴)𝐴

𝑇
− (𝐴 − 𝐴)(𝐴 − 𝐴)

𝑇

= (𝐴 − 𝐴 + 𝐴)(𝐴 − 𝐴)
𝑇
+ (𝐴 − 𝐴)(𝐴 − 𝐴 + 𝐴)

𝑇
− (𝐴 − 𝐴)(𝐴 − 𝐴)

𝑇

= (𝐴 − 𝐴)(𝐴 − 𝐴)
𝑇
+ 𝐴(𝐴 − 𝐴)

𝑇
+ (𝐴 − 𝐴)(𝐴 − 𝐴)

𝑇
+ (𝐴 − 𝐴)𝐴

𝑇
− (𝐴 − 𝐴)(𝐴 − 𝐴)

𝑇
.

(4.22)

Note that the column span of 𝐴
𝑇

is orthogonal to the column span of (𝐴 − 𝐴)
𝑇
, which

means that 𝐴(𝐴 − 𝐴)
𝑇
= (𝐴 − 𝐴)𝐴

𝑇
= 0, and from equation (4.22) we get

𝑀 = (𝐴 − 𝐴)(𝐴 − 𝐴)
𝑇
.

Next we will show that the left-hand side of (4.21) is also equal to Tr(𝑋𝑋
𝑇
𝑀). By the

relation between the Frobenius norm and the trace function, we have

‖
‖
‖
𝑋𝑋

𝑇
𝐴 − 𝑋𝑋

𝑇
𝐴
‖
‖
‖

2

𝐹

=
‖
‖
‖
𝑋𝑋

𝑇
(𝐴 − 𝐴)

‖
‖
‖

2

𝐹

= Tr((𝐴 − 𝐴)
𝑇
𝑋𝑋

𝑇
𝑋𝑋

𝑇
(𝐴 − 𝐴)).

By the cyclic property of the trace and by the fact that 𝑋 has orthonormal columns,

we have

Tr((𝐴 − 𝐴)
𝑇
𝑋𝑋

𝑇
(𝐴 − 𝐴)) = Tr(𝑋𝑋

𝑇
(𝐴 − 𝐴)(𝐴 − 𝐴)

𝑇
).

We claim that Tr(𝑋𝑋
𝑇
𝑀) =

‖
‖
‖
𝑋𝑋

𝑇
(𝐴 − 𝐴)

‖
‖
‖

2

𝐹

≤
‖
‖
‖
(𝐴 − 𝐴)𝑚

‖
‖
‖

2

𝐹

. By the SVD theory, we

have that

‖
‖
‖
(𝐴 − 𝐴) − (𝐴 − 𝐴)𝑚

‖
‖
‖

2

𝐹

≤
‖
‖
‖
(𝐴 − 𝐴) − 𝑋𝑋

𝑇
(𝐴 − 𝐴)

‖
‖
‖

2

𝐹

,

since rank(𝑋𝑋
𝑇
(𝐴 − 𝐴)) is at most 𝑚. By Fact 10 (Pythagoras) it follows that

‖
‖
‖
(𝐴 − 𝐴)

‖
‖
‖

2

𝐹

−
‖
‖
‖
(𝐴 − 𝐴)𝑚

‖
‖
‖

2

𝐹

≤
‖
‖
‖
(𝐴 − 𝐴)

‖
‖
‖

2

𝐹

−
‖
‖
‖
𝑋𝑋

𝑇
(𝐴 − 𝐴)

‖
‖
‖

2

𝐹

,

which implies

‖
‖
‖
𝑋𝑋

𝑇
(𝐴 − 𝐴)

‖
‖
‖

2

𝐹

≤
‖
‖
‖
(𝐴 − 𝐴)𝑚

‖
‖
‖

2

𝐹

.

Now we need to prove that
‖
‖
‖
(𝐴 − 𝐴)𝑚

‖
‖
‖

2

𝐹

≤ 2𝜀
′
‖𝐴 − 𝐴𝑚‖

2

𝐹
. We start with the following

fact.

Fact 48. Let 𝐴 and 𝐵 ∈ ℝ
𝑑×𝑛

be matrices. Then rank(𝐴 + 𝐵) is at most rank(𝐴) + rank(𝐵).

This fact follows by noting that for any vector 𝑣 ∈ ℝ
𝑑

we have (𝐴 + 𝐵)𝑣 = 𝐴𝑣 + 𝐵𝑣,

therefore if 𝛼 is a basis for span(𝐴) and 𝛽 is a basis for span(𝐵), then span(𝐴 + 𝐵) is

4.2 | FINDING AN 𝜀-SKETCH FOR THE (𝓁
2

2
,)-CLUSTERING PROBLEM

37

contained in the subspace spanned by 𝛼 ∪ 𝛽.

By the fact above, we have that the rank of 𝐴 + (𝐴 − 𝐴)𝑚 is at most 𝑠 + 𝑚, thus by the

property of best rank 𝑠 + 𝑚 approximation in the Frobenius norm property of the SVD we

have

‖𝐴 − 𝐴𝑠+𝑚‖
2

𝐹
≤
‖
‖
‖
𝐴 − (𝐴 + (𝐴 − 𝐴)𝑚)

‖
‖
‖

2

𝐹

.

Using Fact 10 (Pythagoras) and that ‖𝐵‖
𝐹
=
‖
‖
𝐵
𝑇 ‖
‖𝐹

for any matrix 𝐵 we have

‖
‖
‖
𝐴 − (𝐴 + (𝐴 − 𝐴)𝑚)

‖
‖
‖

2

𝐹

=
‖
‖
‖
𝐴 − 𝐴

‖
‖
‖

2

𝐹

−
‖
‖
‖
(𝐴 − 𝐴)𝑚

‖
‖
‖

2

𝐹

.

Reordering and using that 𝐴 satisfies equation (4.19) give

‖
‖
‖
(𝐴 − 𝐴)𝑚

‖
‖
‖

2

𝐹

≤
‖
‖
‖
𝐴 − 𝐴

‖
‖
‖

2

𝐹

− ‖𝐴 − 𝐴𝑠+𝑚‖
2

𝐹
≤ (1 + 𝜀

′
) ‖𝐴 − 𝐴𝑠‖

2

𝐹
− ‖𝐴 − 𝐴𝑠+𝑚‖

2

𝐹
. (4.23)

Remember that ‖𝐴‖
2

𝐹
= ∑

rank(𝐴)

𝑖=1
𝜎
2

𝑖
(𝐴). From the definition of 𝐴𝑠+𝑚 and 𝐴𝑠 it follows

that

‖𝐴 − 𝐴𝑠+𝑚‖
2

𝐹
=

rank(𝐴)

∑

𝑖=𝑠+𝑚+1

𝜎
2

𝑖
(𝐴)

and

‖𝐴 − 𝐴𝑠‖
2

𝐹
=

rank(𝐴)

∑

𝑖=𝑠+1

𝜎
2

𝑖
(𝐴),

thus expression (4.23) can be rearranged to

‖
‖
‖
(𝐴 − 𝐴)𝑚

‖
‖
‖

2

𝐹

≤ 𝜀
′
‖𝐴 − 𝐴𝑠‖

2

𝐹
+

𝑠+𝑚

∑

𝑖=𝑠+1

𝜎
2

𝑖
(𝐴). (4.24)

The singular values are positive and non-increasing, thus the last 𝑚 terms of the

sum ∑
𝑠+𝑚

𝑖=𝑚+1
𝜎
2

𝑖
(𝐴) are the smallest in a sum with 𝑠 = ⌈𝜀

′−1
𝑚⌉ terms. Therefore

𝑠+𝑚

∑

𝑖=𝑚+1

𝜎
2

𝑖
(𝐴) ≥ 𝜀

′−1

𝑠+𝑚

∑

𝑖=𝑠+1

𝜎
2

𝑖
(𝐴).

Applying this in expression (4.24) we have

‖
‖
‖
(𝐴 − 𝐴)𝑚

‖
‖
‖

2

𝐹

≤ 𝜀
′
‖𝐴 − 𝐴𝑠‖

2

𝐹
+ 𝜀

′

𝑠+𝑚

∑

𝑖=𝑚+1

𝜎
2

𝑖
(𝐴)

≤ 𝜀
′
‖𝐴 − 𝐴𝑠‖

2

𝐹
+ 𝜀

′

rank(𝐴)

∑

𝑖=𝑚+1

𝜎
2

𝑖
(𝐴).

38

4 | APPROXIMATION BY DIMENSION REDUCTION

Finally we use that ‖𝐴 − 𝐴𝑠‖𝐹 ≤
‖𝐴 − 𝐴𝑚‖𝐹 since rank(𝐴𝑠) ≥ rank(𝐴𝑚) to obtain

‖
‖
‖
(𝐴 − 𝐴)𝑚

‖
‖
‖

2

𝐹

≤ 2𝜀
′
‖𝐴 − 𝐴𝑚‖

2

𝐹

≤ 2𝜀
′ ‖
‖
𝐴 − 𝑋𝑋

𝑇
𝐴
‖
‖

2

𝐹
= 2𝜀

′ ‖
‖
𝑌
𝑇
𝐴
‖
‖

2

𝐹
.

And since

‖
‖
‖
(𝐴 − 𝐴)𝑚

‖
‖
‖

2

𝐹

=

𝑚

∑

𝑖=1

𝜆𝑖(𝑀)

≥ Tr(𝑋𝑋
𝑇
𝑀) = Tr(𝑋𝑋

𝑇
(𝐴𝐴

𝑇
− 𝐴𝐴

𝑇
))

=
‖
‖
𝑋

𝑇
𝐴
‖
‖

2

𝐹
−
‖
‖
‖
𝑋

𝑇
𝐴
‖
‖
‖

2

𝐹

=
‖
‖
‖
𝑋𝑋

𝑇
𝐴 − 𝑋𝑋

𝑇
𝐴
‖
‖
‖

2

𝐹

,

we have finished the proof. ■

The last result we need is related to the previous lemma.

Theorem 49. Under the same hypothesis of Lemma 47 we have that

|
|
|
|

‖
‖
‖
𝑌
𝑇
𝐴
‖
‖
‖

2

𝐹

+ ‖𝐴 − 𝐴𝑠‖
2

𝐹
−
‖
‖
𝑌
𝑇
𝐴
‖
‖

2

𝐹

|
|
|
|

≤ 2𝜀
′ ‖
‖
𝑌
𝑇
𝐴
‖
‖

2

𝐹
.

Proof. By Fact 10 (Pythagoras) we have

‖𝐴 − 𝐴𝑠‖
2

𝐹
= ‖𝐴‖

2

𝐹
− ‖𝐴𝑠‖

2

𝐹

and

‖
‖
𝑌
𝑇
𝐴
‖
‖

2

𝐹
+
‖
‖
𝑋

𝑇
𝐴
‖
‖

2

𝐹
= ‖𝐴‖

2

𝐹
,

therefore

|
|
|
|

‖
‖
‖
𝑌
𝑇
𝐴
‖
‖
‖

2

𝐹

+ ‖𝐴 − 𝐴𝑠‖
2

𝐹
−
‖
‖
𝑌
𝑇
𝐴
‖
‖

2

𝐹

|
|
|
|

=

|
|
|
|

‖
‖
‖
𝐴
‖
‖
‖

2

𝐹

−
‖
‖
‖
𝑋

𝑇
𝐴
‖
‖
‖

2

𝐹

+ ‖𝐴‖
2

𝐹
− ‖𝐴𝑠‖

2

𝐹
− ‖𝐴‖

2

𝐹
+
‖
‖
𝑋

𝑇
𝐴
‖
‖

2

𝐹

|
|
|
|

=

|
|
|
|

‖
‖
‖
𝐴
‖
‖
‖

2

𝐹

− ‖𝐴𝑠‖
2

𝐹
−
‖
‖
‖
𝑋

𝑇
𝐴
‖
‖
‖

2

𝐹

+
‖
‖
𝑋

𝑇
𝐴
‖
‖

2

𝐹

|
|
|
|

. (4.25)

Because 𝐴𝑠 is a best rank 𝑠 approximation of 𝐴 in the Frobenius norm, we

have
‖
‖
‖
𝐴
‖
‖
‖

2

𝐹

≤ ‖𝐴𝑠‖
2

𝐹
, and thus

‖
‖
‖
𝐴
‖
‖
‖

2

𝐹

− ‖𝐴𝑠‖
2

𝐹
≤ 0. (4.26)

From the hypothesis, the matrix 𝐴 satisfies expression (4.19), and by Pythagoras we

can write

‖𝐴‖
2

𝐹
−
‖
‖
‖
𝐴
‖
‖
‖

2

𝐹

≤ ‖𝐴‖
2

𝐹
− ‖𝐴𝑠‖

2

𝐹
+ 𝜀

′
‖𝐴 − 𝐴𝑠‖

2

𝐹
,

which implies

−𝜀
′
‖𝐴 − 𝐴𝑠‖

2

𝐹
≤
‖
‖
‖
𝐴
‖
‖
‖

2

𝐹

− ‖𝐴𝑠‖
2

𝐹
.

4.2 | FINDING AN 𝜀-SKETCH FOR THE (𝓁
2

2
,)-CLUSTERING PROBLEM

39

Using that 𝐴𝑠 is a best rank ⌈𝜀
′−1

𝑚⌉ ≥ 𝑚 approximation of 𝐴 and 𝑋𝑋
𝑇
𝐴 is of rank at

most 𝑚, we obtain

−𝜀
′
‖𝐴 − 𝐴𝑠‖

2

𝐹
≥ −𝜀

′ ‖
‖
𝐴 − 𝑋𝑋

𝑇
𝐴
‖
‖

2

𝐹
= −𝜀

′ ‖
‖
𝑌
𝑇
𝐴
‖
‖

2

𝐹
.

Combining this with inequality (4.20) of Lemma 47 we can conclude that the expression

inside the modulus in (4.25) is at least −𝜀
′ ‖
‖
𝑌
𝑇
𝐴
‖
‖

2

𝐹
and at most 2𝜀

′ ‖
‖
𝑌
𝑇
𝐴
‖
‖

2

𝐹
, finishing the

proof. ■

We are now ready to prove Theorem 45.

Proof of Theorem 45. To prove that 𝐴 is an 𝜀-sketch of 𝐴, we will show that Δ = ‖𝐴 − 𝐴𝑠‖
2

𝐹

is a constant with the property that for every 𝐶 ∈ 

|
|
|
dist

2

(𝐴, 𝐶) + Δ − dist
2

(𝐴, 𝐶)
|
|
|
≤ 𝜀 dist

2

(𝐴, 𝐶). (4.27)

Let 𝐶 ∈  be any solution. Since  is a 𝑚-dimensional family, there exists a subspace 𝐿

of dimension 𝑚 such that 𝐶 ⊂ 𝐿. Let 𝐿
⟂

be the orthogonal complement of 𝐿. Suppose

that 𝑋 ∈ ℝ
𝑑×𝑚

has orthonormal columns that span 𝐿 and 𝑌 ∈ ℝ
𝑑×(𝑑−𝑚)

has orthonormal

columns that span 𝐿
⟂
.

Since 𝐶 ⊂ 𝐿, by Fact 10 (Pythagoras) we have

dist
2

(𝐴, 𝐶) =
‖
‖
𝑌
𝑇
𝐴
‖
‖

2

𝐹
+ dist

2

(𝑋𝑋
𝑇
𝐴, 𝐶). (4.28)

Applying this to the left-hand side of inequality (4.27) give

|
|
|
dist

2

(𝐴, 𝐶) + ‖𝐴 − 𝐴𝑠‖
2

𝐹
− dist

2

(𝐴, 𝐶)
|
|
|

(4.29)

=

|
|
|
|

‖
‖
‖
𝑌
𝑇
𝐴
‖
‖
‖

2

𝐹

+ dist
2

(𝑋𝑋
𝑇
𝐴, 𝐶) + ‖𝐴 − 𝐴𝑠‖

2

𝐹
−
‖
‖
𝑌
𝑇
𝐴
‖
‖

2

𝐹
− dist

2

(𝑋𝑋
𝑇
𝐴, 𝐶)

|
|
|
|

(4.30)

≤

|
|
|
|

‖
‖
‖
𝑌
𝑇
𝐴
‖
‖
‖

2

𝐹

+ ‖𝐴 − 𝐴𝑠‖
2

𝐹
−
‖
‖
𝑌
𝑇
𝐴
‖
‖

2

𝐹

|
|
|
|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

first term

+
|
|
|
dist

2

(𝑋𝑋
𝑇
𝐴, 𝐶) − dist

2

(𝑋𝑋
𝑇
𝐴, 𝐶)

|
|
|

⏟⏞⏞⏞⏟⏞⏞⏞⏟

second term

(4.31)

To bound the first term, we use Theorem 49 with 𝜀
′
= 𝜀

2
/8, obtaining

|
|
|
|

‖
‖
‖
𝑌
𝑇
𝐴
‖
‖
‖

2

𝐹

+ ‖𝐴 − 𝐴𝑠‖
2

𝐹
−
‖
‖
𝑌
𝑇
𝐴
‖
‖

2

𝐹

|
|
|
|

≤ 2

𝜀
2

8

‖
‖
𝑌
𝑇
𝐴
‖
‖

2

𝐹
. (4.32)

To bound the second term, we start applying Lemma 46, the weak triangle inequality,

in each column of 𝑋𝑋
𝑇
𝐴 and 𝑋𝑋

𝑇
𝐴, obtaining

|
|
|
dist

2

(𝑋𝑋
𝑇
𝐴, 𝐶) − dist

2

(𝑋𝑋
𝑇
𝐴, 𝐶)

|
|
|
≤ 𝜀 dist

2

(𝑋𝑋
𝑇
𝐴, 𝐶) +

2

𝜀

‖
‖
‖
𝑋𝑋

𝑇
𝐴 − 𝑋𝑋

𝑇
𝐴
‖
‖
‖

2

𝐹

. (4.33)

40

4 | APPROXIMATION BY DIMENSION REDUCTION

Applying inequality (4.21) of Lemma 47 with 𝜀
′
= 𝜀

2
/8, we obtain

𝜀 dist
2

(𝑋𝑋
𝑇
𝐴, 𝐶) +

2

𝜀

‖
‖
‖
𝑋𝑋

𝑇
𝐴 − 𝑋𝑋

𝑇
𝐴
‖
‖
‖

2

𝐹

≤ 𝜀 dist
2

(𝑋𝑋
𝑇
𝐴, 𝐶) +

2

𝜀

⋅ 2

𝜀
2

8

‖
‖
𝑌
𝑇
𝐴
‖
‖

2

𝐹
. (4.34)

Combining inequalities (4.32) and (4.34), and using that for any 𝜀 ∈ (0, 1) the expres-

sion 𝜀
2
/4 + 𝜀/2 is at most 𝜀 we get

|
|
|
dist

2

(𝐴, 𝐶) + ‖𝐴 − 𝐴𝑠‖
2

𝐹
− dist

2

(𝐴, 𝐶)
|
|
|
≤
(

𝜀
2

4

+

𝜀

2)

‖
‖
𝑌
𝑇
𝐴
‖
‖

2

𝐹
+ 𝜀 dist

2

(𝑋𝑋
𝑇
𝐴, 𝐶)

≤ 𝜀
‖
‖
𝑌
𝑇
𝐴
‖
‖

2

𝐹
+ 𝜀 dist

2

(𝑋𝑋
𝑇
𝐴, 𝐶) = 𝜀 dist

2

(𝐴, 𝐶),

finishing the proof. ■

Remark: In this chapter we have presented a random dimension reduction scheme for

the (𝓁
2

2
,)-clustering problem that can be found in linear time in the dimension 𝑑 and in the

number of points 𝑛. An important aspect of the sketch we obtain is that it lies in a subspace

of dimension that depends only on the dimensionality of the set  and on the parameter 𝜀.

Therefore some algorithms that have complexity exponential in 𝑑 can be modified to become

an (1 + 𝜀)-approximation with a polynomial dependence in 𝑑.

41

Chapter 5

Application to projective
clustering

In this chapter we will present an approximation scheme for the linear 𝑗-sub-

space 𝑘-clustering problem in ℝ
𝑑

with polynomial time complexity for 𝑛, the number

of points, but exponential in 𝑑. Then we will show an application of Algorithm 1 to obtain

a polynomial time random approximation scheme (PRAS) that is polynomial for both 𝑛

and 𝑑 for this problem. This result is of theoretical application mostly, since the degree of

the polynomial is rather large.

5.1 A (1 + 𝜀)-approximation for projective
clustering

The work we present is based in a result of Deshpande, Rademacher, Vempala, and

Wang (2006). The authors claim that they developed a polynomial time approximation

scheme (PTAS) for the linear 𝑗-subspace 𝑘-clustering problem. Given an upper bound 𝐵

for the cost of an optimal solution, their scheme returns in polynomial time in 𝑛 and 𝑑 a

solution with cost at most (1 + 𝜀)𝐵.

The main idea of their scheme is to consider a special finite subset ′
⊂  of solutions,

and then compute the cost of every solution spanned by this set and report the one with

lowest cost. This special finite set is called 𝛿-net.

Definition 50 (𝛿-net). Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix, and let 𝛿 > 0 and  > 0 be fixed. We say

that a set 𝐷 ⊂ ℝ
𝑑

is a 𝛿-net with radius  for 𝐴 if for every 𝑥 ∈ ℝ
𝑑

such that dist(𝑥, 𝐴) ≤ 
there exists an 𝑦 ∈ 𝐷 such that ‖𝑥 − 𝑦‖ ≤ 𝛿.

To explicitly build a 𝛿-net of radius  for a finite set 𝐴 ⊂ ℝ
𝑑

with |𝐴| = 𝑛, we could

start with a (𝛿−1
𝑑
−1/2

)-fine grid 𝐻 of dimension 𝑑. The scaled up set

𝐻
′
= {ℎ ∶ ∀ℎ ∈ 𝐻}

will be a 𝛿-net for the origin. By putting copies of this set around each point of 𝐴 we obtain

42

5 | APPLICATION TO PROJECTIVE CLUSTERING

the 𝛿-net. More precisely, the set

𝐴 + 𝐻
′
=

{

𝑎 + ℎ
′
∶ ∀𝑎 ∈ 𝐴, ∀ℎ

′
∈ 𝐻

′

}

will be a 𝛿-net for 𝐴 with cardinality

|
|
𝐴 + 𝐻

′|
|
= 𝑂

(

𝑛
(

3
√

𝑑

𝛿)

𝑑

)

.

A proof that 𝐻
′

is a 𝛿-net for the origin can be found in Fact 61 at Appendix A. This

construction has the property that 𝐴 ⊂ 𝐷, which is necessary for the next algorithm.

Algorithm 2: An approximation for the linear 𝑗-subspace 𝑘-clustering

Input: A matrix 𝐴 ∈ ℝ
𝑑×𝑛

, a real 𝜀 ∈ (0, 1) and a real 𝐵 > 0.

Output: A set 𝐹1, … , 𝐹𝑘 of 𝑘 subspaces of dimension 𝑗 .

1 Set

𝛿 ∶=

𝜀

√

𝐵

8𝑗𝑘

√

𝑛

;

2 Set

 ∶=

√

𝐵 + 2𝛿𝑗;

3 Let 𝐷 be a 𝛿-net with radius  for 𝐴 that contains 𝐴;

4 For each choice of 𝑘 subspaces 𝐹1, … , 𝐹𝑘 of dimension 𝑗 , each one spanned by 𝑗

points of 𝐷, compute dist
2

(𝐴,⋃
𝑘

𝑖=1
𝐹𝑖);

5 Return the subspaces 𝐹1, … , 𝐹𝑘 with lowest cost;

This algorithm is just a brute-force. We are searching the optimal set of subspaces in

a finite family (the subspaces spanned by the points of the 𝛿-net 𝐷), and we do this by

computing the cost of all of them and returning one with minimum cost. Bounding the

time complexity is straightforward.

The number of solutions spanned by 𝐷 is at most

(

(
|𝐷|

𝑗
)

𝑘)
≤ (|𝐷|)

𝑗𝑘
.

This is because to span a subspace of dimension 𝑗 we must choose a set with at least 𝑗

points from 𝐷, and to obtain one solution we must choose 𝑘 of these sets at a time. Since

it is possible to build a 𝛿-net of radius  for 𝐴 with cardinality

𝑂

(

𝑛
(

3
√

𝑑

𝛿)

𝑑

)

,

5.1 | A (1 + 𝜀)-APPROXIMATION FOR PROJECTIVE CLUSTERING

43

the number of solutions the algorithm must test is at most

𝑂

(

𝑛
𝑗𝑘

(

3
√

𝑑

𝛿)

𝑗𝑘𝑑

)

.

Finding an orthonormal basis of an subspace takes time𝑂(𝑗
2
𝑑), if we use Gram-Schmidt.

Computing the cost of an solution takes time 𝑂(𝑗𝑘𝑛𝑑 + 𝑗
2
𝑘𝑑), since we need to find an

orthonormal basis for every subspace of the solution and we need to project every point

of 𝐴 into all of the 𝑘 subspaces. Doing this for every solution takes time

𝑂

(

(𝑗𝑘𝑛𝑑 + 𝑗
2
𝑘𝑑)𝑛

𝑗𝑘

(

3
√

𝑑

𝛿)

𝑗𝑘𝑑

)

.

Substituting the values of 𝛿 and , we find that


𝛿

≤

10𝑗𝑘

√

𝑛

𝜀

.

The final bound is

𝑂

(

(𝑗𝑘𝑛𝑑 + 𝑗
2
𝑘𝑑)𝑛

𝑗𝑘

(

30𝑗𝑘

√

𝑛𝑑

𝜀)

𝑗𝑘𝑑

)

= 𝑂

((

𝑗𝑘𝑛𝑑

𝜀)

3𝑗𝑘𝑑

)

.

The following theorem guarantee that the solution returned by Algorithm 2 is cor-

rect.

Theorem 51 (Deshpande, Rademacher, Vempala, and Wang, 2006). Let (𝐴, 𝜀, 𝐵) be an

input for Algorithm 2. Suppose that the cost of an optimal solution for the instance 𝐴 is 𝐵
∗
.

If 𝐵 ≥ 𝐵
∗
, then the solution given by Algorithm 2 has cost at most 𝐵

∗
+ 𝜀𝐵.

This theorem implies that for 𝐵 ≥ 𝐵
∗

Algorithm 2 is a (1 + 𝜀(𝐵/𝐵
∗
))-approximation

for the linear 𝑗-subspace 𝑘-clustering problem. To prove Theorem 51 we will show that for

every subspace in an optimal solution a 𝛿-net with “sufficient” radius will contain points

that spans a subspace with cost similar to the optimal. This notion of “sufficient” radius is

given by the following lemma.

Lemma 52 (Deshpande, Rademacher, Vempala, and Wang, 2006). Let 𝐴 ∈ ℝ
𝑑×𝑛

be a

matrix and let 𝛿 > 0 be fixed. Suppose that 𝐷 is a 𝛿-net for 𝐴 with radius . For every

subspace 𝑊 ⊂ ℝ
𝑑

of dimension 𝑗 , if

 ≥

√

dist
2

(𝐴,𝑊) + 2𝛿𝑗

then there exists a subspace 𝐹 of dimension 𝑗 of ℝ
𝑑

spanned by 𝑗 points of 𝐷 such that

dist
2

(𝐴, 𝐹) ≤ dist
2

(𝐴,𝑊) + 4𝑗
2
𝑛𝛿

2
+ 4𝑗𝛿∑

𝑎∈𝐴

dist(𝑎, 𝑊). (5.1)

44

5 | APPLICATION TO PROJECTIVE CLUSTERING

To prove this lemma we first need to define a special linear function called rota-

tion.

Let 𝑢 and 𝑣 be non-null vectors of ℝ
𝑑
. Suppose that 𝑢 and 𝑣 are linearly independent.

Let 𝑢
′
∶= 𝑢/ ‖𝑢‖ and 𝑣

′
∶= 𝑣/ ‖𝑣‖. Let 𝑃 be the subspace spanned by 𝑢 and 𝑣 and let 𝑃

⟂

its orthogonal complement. We say that 𝑃 is the plane of rotation defined by 𝑢 and 𝑣.

Let 𝐵 ∈ ℝ
𝑑×𝑑−2

be a matrix with orthonormal columns that spans 𝑃
⟂
. There exists norm

one vectors 𝑢
∗

and 𝑣
∗

such that 𝐵𝑢 and 𝐵𝑣 are 𝑑 × 𝑑 matrices that agrees with 𝐵 in the

first 𝑑 − 2 columns and 𝐵𝑢 has 𝑢
′

and 𝑢
∗

respectively as the last two columns and 𝐵𝑣 has 𝑣
′

and 𝑣
∗

respectively as the last two columns. Its straightforward to show that if we add

the restriction det(𝐵𝑢) = det(𝐵𝑣) = 1 then 𝑢
∗

and 𝑣
∗

are uniquely determined, thus we will

impose that det(𝐵𝑢) = det(𝐵𝑣) = 1.

Any linear function can be defined by its application on a basis of the space. Thus

let 𝑓 ∶ ℝ
𝑑
→ ℝ

𝑑
be such that 𝑓 (𝑏) = 𝑏 for every 𝑏 ∈ 𝐵, and 𝑓 (𝑢

′
) = 𝑣

′
and 𝑓 (𝑢

∗
) = 𝑣

∗
. Since 𝑓

is linear, there exists a matrix 𝑅 ∈ ℝ
𝑑×𝑑

such that for every 𝑥 ∈ ℝ
𝑑

we have 𝑓 (𝑥) = 𝑅𝑥 . We

say that the matrix 𝑅 is an (𝑢, 𝑣)-rotation matrix. A nice property of this matrix is that it

is unitary, i.e., for every vector 𝑥 we have ‖𝑥‖ = ‖𝑅𝑥‖. Also, since det(𝐵𝑢) = det(𝐵𝑣), we

have det(𝑅) = 1. This matrix 𝑅 is usually known as proper rotation matrix. More details of

this type of matrix can be found in Horn and Johnson, 2013, Chap. 2.

Note that we don’t necessarily need 𝑢 and 𝑣 to be linearly independent. In case they

are linearly dependent we will define 𝑅 as the 𝑑 × 𝑑 identity matrix.

Fact 53. For any 𝑥 ∈ ℝ
𝑑

we have

‖𝑥 − 𝑅𝑥‖ = ‖𝜋𝑃(𝑥) − 𝑅𝜋𝑃(𝑥)‖ .

This fact follows directly from the definition of 𝑅.

Fact 54. For any 𝑥 ∈ ℝ
𝑑

and non-negative real 𝛿 such that dist(𝑥, 𝑃
⟂
) ≤ 𝛿 we have

‖𝑥 − 𝑅𝑥‖ ≤ 2𝛿.

Proof. If 𝑅 is the identity matrix the fact is trivial. Suppose that 𝑢 and 𝑣 are linearly

independent. Since 𝐵𝑢 is a base of ℝ
𝑑
, there exists reals 𝛼, 𝛽, 𝛾1, … , 𝛾𝑑−2 such that

𝑥 = 𝛼𝑢
′
+ 𝛽𝑢

∗
+

𝑑−2

∑

𝑖=1

𝛾𝑖𝑏𝑖.

This means that we can write the projection of 𝑥 as 𝜋𝑃(𝑥) = 𝛼𝑢
′
+ 𝛽𝑢

∗

and 𝜋𝑃
⟂(𝑥) = ∑

𝑑−2

𝑖=1
𝛾𝑖𝑏𝑖. Using this with the triangle inequality we get

‖𝑥 − 𝑅𝑥‖ ≤ ‖𝑥 − 𝜋𝑃
⟂(𝑥)‖ + ‖𝜋𝑃

⟂(𝑥) − 𝑅𝑥‖ ≤ 𝛿 +

‖
‖
‖
‖
‖

𝑑−2

∑

𝑖=1

𝛾𝑖𝑏𝑖 − 𝛼𝑣
′
− 𝛽𝑣

∗
−

𝑑−2

∑

𝑖=1

𝛾𝑖𝑏𝑖

‖
‖
‖
‖
‖

,

which can be simplified to

𝛿 + ‖𝑅𝜋𝑃(𝑥)‖ .

5.1 | A (1 + 𝜀)-APPROXIMATION FOR PROJECTIVE CLUSTERING

45

Since 𝑅 is unitary we have ‖𝑅𝜋𝑃(𝑥)‖ = ‖𝜋𝑃(𝑥)‖. Using that dist(𝑥, 𝑃
⟂
) = ‖𝜋𝑃(𝑥)‖ we

obtain ‖𝑥 − 𝑅𝑥‖ ≤ 2𝛿. ■

With this tool we can now prove Lemma 52.

Proof. The subspace 𝐹 will be constructed inductively. We start with 𝐹0 = 𝑊 and find

subspaces 𝐹1, … , 𝐹𝑗 such that 𝐹𝑖 is the result of an application of an (𝑢𝑖, 𝑣𝑖)-rotation to 𝐹𝑖−1,

for some 𝑢𝑖 and 𝑣𝑖, and includes a new point from the 𝛿-net.

It is sufficient to show that every subspace have the property that for every point 𝑎 ∈ 𝐴

we have

dist(𝑎, 𝐹𝑖) ≤ dist(𝑎, 𝐹𝑖−1) + 2𝛿, (5.2)

as this implies dist(𝑎, 𝐹) ≤ dist(𝑎, 𝑊)+2𝑗𝛿. Taking the square of both sides of the inequality

and adding for all 𝑎 ∈ 𝐴 give us inequality (5.1).

We will begin with the base case. Suppose that 𝑖 = 1. If 𝐹0 contains at least one

non-null point from 𝐷, we are done. If not, let 𝑎
∗

1
= argmax

{

‖𝜋𝐹0
(𝑎)‖ ∶ 𝑎 ∈ 𝐴

}

and

let 𝑔1 = argmin

{

‖𝜋𝐹0
(𝑎

∗

1
) − 𝑔‖ ∶ 𝑔 ∈ 𝐷

}

. Suppose that 𝑔1 ≠ 0⃗ and 𝜋𝐹0
(𝑎

∗

1
) ≠ 0⃗. We will

deal with the null case later. We can define 𝑅1 as being the (𝜋𝐹0
(𝑎

∗

1
), 𝑔1)-rotation matrix.

Let 𝐹1 = 𝑅1𝐹0. To prove the lemma for 𝑖 = 1 is enough to show that for every 𝑎 ∈ 𝐴 we

have

‖𝜋𝐹0
(𝑎) − 𝑅1𝜋𝐹0

(𝑎)‖ ≤ 2𝛿, (5.3)

since we can deduce the following bound:

dist(𝑎, 𝐹1) = ‖𝑎 − 𝜋𝐹1
(𝑎)‖ ≤ ‖𝑎 − 𝑅1𝜋𝐹0

(𝑎)‖ ,

as 𝜋𝐹1
(𝑎) is the closest point from 𝐹1 to 𝑎 and 𝑅1𝜋𝐹0

(𝑎) ∈ 𝐹1. Applying the triangle inequality

we obtain

‖𝑎 − 𝑅1𝜋𝐹0
(𝑎)‖ ≤ ‖𝑎 − 𝜋𝐹0

(𝑎)‖ + ‖𝜋𝐹0
(𝑎) − 𝑅1𝜋𝐹0

(𝑎)‖

= dist(𝑎, 𝐹0) + ‖𝜋𝐹0
(𝑎) − 𝑅1𝜋𝐹0

(𝑎)‖ .

To prove (5.3) we observe that ‖𝜋𝐹0
(𝑎) − 𝑅1𝜋𝐹0

(𝑎)‖ is the distance between a point and

its rotation, thus it is maximized when ‖𝜋𝐹0
(𝑎)‖ is maximized, and by construction this

happens when 𝑎 = 𝑎
∗

1
. Now we apply the triangle inequality to

‖𝜋𝐹0
(𝑎

∗

1
) − 𝑅1𝜋𝐹0

(𝑎
∗

1
)‖ ≤ ‖𝜋𝐹0

(𝑎
∗

1
) − 𝑔1‖ + ‖𝑔1 − 𝑅1𝜋𝐹0

(𝑎
∗

1
)‖ .

The rotation applied to 𝜋𝐹0
(𝑎

∗

1
)/ ‖𝜋𝐹0

(𝑎
∗

1
)‖ is 𝑔1/ ‖𝑔1‖, by the definition of (𝜋𝑊 (𝑎

∗

1
), 𝑔1)-rota-

tion, therefore 𝑔1 is equal to 𝑅1𝜋𝐹0
(𝑎

∗

1
) scaled by a positive factor, hence

‖𝜋𝐹0
(𝑎

∗

1
) − 𝑔1‖ + ‖𝑔1 − 𝑅1𝜋𝐹0

(𝑎
∗

1
)‖ = ‖𝜋𝐹0

(𝑎
∗

1
) − 𝑔1‖ +

|
|
‖𝑔1‖ − ‖𝑅1𝜋𝐹0

(𝑎
∗

1
)‖
|
|
.

46

5 | APPLICATION TO PROJECTIVE CLUSTERING

Now we use that 𝑅1 is unitary and another triangle inequality to obtain

‖𝜋𝐹0
(𝑎

∗

1
) − 𝑔1‖ +

|
|
‖𝑔1‖ − ‖𝑅1𝜋𝐹0

(𝑎
∗

1
)‖
|
|
= ‖𝜋𝐹0

(𝑎
∗

1
) − 𝑔1‖ +

|
|
‖𝑔1‖ − ‖𝜋𝐹0

(𝑎
∗

1
)‖
|
|

≤ ‖𝜋𝐹0
(𝑎

∗

1
) − 𝑔1‖ + ‖𝑔1 − 𝜋𝐹0

(𝑎
∗

1
)‖ = 2 ‖𝜋𝐹0

(𝑎
∗

1
) − 𝑔1‖ .

By the choice of , we have that the distance between 𝐹0 and 𝑎
∗

1
is at most . Since 𝐷

is a 𝛿-net, the distance ‖𝜋𝐹0
(𝑎

∗

1
) − 𝑔1‖ is at most 𝛿. Therefore for every 𝑎 ∈ 𝐴 we have

‖𝜋𝐹0
(𝑎) − 𝑅1𝜋𝐹0

(𝑎)‖ ≤ 2𝛿.

The case where 𝜋𝐹0
(𝑎

∗

1
) = 0⃗ implies that for every 𝑎 ∈ 𝐴 we have 𝜋𝐹0

(𝑎) = 0⃗,

therefore any rotation 𝑅1 such that 𝑅1𝐹0 contains some non-null 𝑔 ∈ 𝐷 will work,

since ‖𝜋𝐹0
(𝑎) − 𝑅1𝜋𝐹0

(𝑎)‖ = 0 ≤ 2𝛿.

The case where 𝑔1 = 0⃗ implies that for every 𝑎 ∈ 𝐴 the value ‖𝜋𝐹0
(𝑎)‖ is at most 𝛿. For

any plane of rotation 𝑃 , since 0⃗ ∈ 𝑃
⟂

we have dist(𝜋𝐹0
(𝑎), 𝑃

⟂
) ≤ 𝛿. Therefore we can let 𝑔1

be any non-null 𝑔 ∈ 𝐷 since from Fact 54 any (𝜋𝐹0
(𝑎

∗

1
), 𝑔1)-rotation matrix 𝑅1 will have the

property

‖𝑎 − 𝑅1𝜋𝐹0
(𝑎)‖ ≤ 2𝛿.

Now we will prove the induction. Suppose that 1 < 𝑖 ≤ 𝑗 , let 1 ∶= {𝑔1} and for

all 1 < 𝑘 < 𝑖 let 𝑘 ∶= 𝑘−1 ∪ {𝑔𝑘}. Define 𝐺𝑖 ∶= span(𝑖). We want 𝐺𝑖 ⊂ 𝐹𝑖, thus we will

make each rotation 𝑅𝑖 such that its plane of rotation is orthogonal to 𝐺𝑖−1.

Let 𝑎
∗

𝑖
∶= argmax

{
‖
‖
𝜋
𝐺
⟂

𝑖−1

(𝜋𝐹𝑖−1
(𝑎))

‖
‖
∶ 𝑎 ∈ 𝐴

}

, and let 𝑔𝑖 ∶= argmin

{
‖
‖
𝜋𝐹𝑖−1

(𝑎
∗

𝑖
) − 𝑔

‖
‖
∶ 𝑔 ∈ 𝐷

}

.

We will show that
‖
‖
𝜋𝐹𝑖−1

(𝑎
∗

𝑖
) − 𝑔𝑖

‖
‖
≤ 𝛿 by proving that

‖
‖
𝑎
∗

𝑖
− 𝜋𝐹𝑖−1

(𝑎
∗

𝑖
)
‖
‖
≤ . This implies

that such 𝑔𝑖 ∈ 𝐷 exist by the 𝛿-net definition.

By applying the triangle inequality and that the closest vector to 𝑎
∗

𝑖
in a subspace is

the orthogonal projection multiple times we obtain

‖
‖
𝑎
∗

𝑖
− 𝜋𝐹𝑖−1

(𝑎
∗

𝑖
)
‖
‖
≤
‖
‖
𝑎
∗

𝑖
− 𝑅𝑖−1𝜋𝐹𝑖−2

(𝑎
∗

𝑖
)
‖
‖

≤
‖
‖
𝑎
∗

𝑖
− 𝜋𝐹𝑖−2

(𝑎
∗

𝑖
)
‖
‖
+
‖
‖
𝜋𝐹𝑖−2

(𝑎
∗

𝑖
) − 𝑅𝑖−1𝜋𝐹𝑖−2

(𝑎
∗

𝑖
)
‖
‖

≤
‖
‖
𝑎
∗

𝑖
− 𝜋𝐹0

(𝑎
∗

𝑖
)
‖
‖
+

𝑖−2

∑

𝑘=0

‖
‖
𝜋𝐹𝑘

(𝑎
∗

𝑖
) − 𝑅𝑘+1𝜋𝐹𝑘

(𝑎
∗

𝑖
)
‖
‖
.

Note that

‖
‖
𝑎
∗

𝑖
− 𝜋𝐹0

(𝑎
∗

𝑖
)
‖
‖
≤

√

∑

𝑎∈𝐴

(dist(𝑎, 𝑊))
2
=

√

dist
2

(𝐴,𝑊),

and by the induction hypothesis for every 𝑘 = 0,… , 𝑖 − 2 and for every 𝑎 ∈ 𝐴 we have

‖
‖
𝜋𝐹𝑘

(𝑎) − 𝑅𝑘+1𝜋𝐹𝑘
(𝑎)

‖
‖
≤ 2𝛿,

therefore

‖
‖
𝑎
∗

𝑖
− 𝜋𝐹𝑖−1

(𝑎
∗

𝑖
)
‖
‖
≤

√

dist
2

(𝐴,𝑊) + 2𝑗𝛿 ≤ .

5.1 | A (1 + 𝜀)-APPROXIMATION FOR PROJECTIVE CLUSTERING

47

We have proved that
‖
‖
𝜋𝐹𝑖−1

(𝑎
∗

𝑖
) − 𝑔𝑖

‖
‖
≤ 𝛿. Now the natural step is to define 𝑅𝑖 as

an (𝜋
𝐺
⟂

𝑖−1

(𝜋𝐹𝑖−1
(𝑎

∗

𝑖
)), 𝜋

𝐺
⟂

𝑖−1

(𝑔𝑖))-rotation, but this rotation may not be well defined. We must

consider three cases:

1. When 𝜋
𝐺
⟂

𝑖−1

(𝜋𝐹𝑖−1
(𝑎

∗

𝑖
)) = 0⃗;

2. When 𝜋
𝐺
⟂

𝑖−1

(𝑔𝑖) = 0⃗;

3. When 𝑅𝑖 is well defined as an (𝜋
𝐺
⟂

𝑖−1

(𝜋𝐹𝑖−1
(𝑎

∗

𝑖
)), 𝜋

𝐺
⟂

𝑖−1

(𝑔𝑖))-rotation;

In the first two cases, let 𝑔
∗
∈ 𝐷 be such that 𝜋

𝐺
⟂

𝑖−1

(𝑔
∗
) ≠ 0⃗ and let 𝑥 ∈ 𝐹𝑖−1 be such

that 𝜋
𝐺
⟂

𝑖−1

(𝑥) ≠ 0⃗. We define 𝑅𝑖 as an (𝜋
𝐺
⟂

𝑖−1

(𝑥), 𝜋
𝐺
⟂

𝑖−1

(𝑔
∗
))-rotation. This rotation guarantees

that 𝐹𝑖 = 𝑅𝑖𝐹𝑖−1 contains 𝑖−1 ∪ 𝑔
∗
.

For case 1 note that it implies 𝜋𝐹𝑖−1
(𝑎) ∈ 𝐺𝑖−1 for every 𝑎 ∈ 𝐴. Therefore 𝜋𝐹𝑖−1

(𝑎) = 𝜋𝐹𝑖
(𝑎)

and
‖
‖
𝜋𝐹𝑖−1

(𝑎) − 𝑅𝑖𝜋𝐹𝑖−1
(𝑎)

‖
‖
= 0 ≤ 2𝛿.

For case 2 note that it implies 𝑔𝑖 ∈ 𝐺𝑖−1, and thus dist(𝜋𝐹𝑖−1
(𝑎), 𝐺𝑖−1) ≤ 𝛿 for every 𝑎 ∈ 𝐴.

By Fact 54 we obtain
‖
‖
𝜋𝐹𝑖−1

(𝑎) − 𝑅𝑖𝜋𝐹𝑖−1
(𝑎)

‖
‖
≤ 2𝛿.

For the last case we can bound (5.2) similarly to the base case. It is enough to bound

‖
‖
𝜋𝐹𝑖−1

(𝑎) − 𝑅𝑖𝜋𝐹𝑖−1
(𝑎)

‖
‖

as we can use the triangle inequality to achieve (5.1). Also, since the rotation does not

change any vector in the subspace 𝐺𝑖−1 then

‖
‖
𝜋𝐹𝑖−1

(𝑎) − 𝑅𝑖𝜋𝐹𝑖−1
(𝑎)

‖
‖
=
‖
‖
𝜋
𝐺
⟂

𝑖−1

(𝜋𝐹𝑖−1
(𝑎)) − 𝑅𝑖𝜋𝐺

⟂

𝑖−1

(𝜋𝐹𝑖−1
(𝑎))

‖
‖
,

The distance between a vector and its rotation is maximized when its norm is maxi-

mized, thus for every 𝑎 ∈ 𝐴 we have

‖
‖
𝜋
𝐺
⟂

𝑖−1

(𝜋𝐹𝑖−1
(𝑎)) − 𝑅𝑖𝜋𝐺

⟂

𝑖−1

(𝜋𝐹𝑖−1
(𝑎))

‖
‖
≤
‖
‖
𝜋
𝐺
⟂

𝑖−1

(𝜋𝐹𝑖−1
(𝑎

∗

𝑖
)) − 𝑅𝑖𝜋𝐺

⟂

𝑖−1

(𝜋𝐹𝑖−1
(𝑎

∗

𝑖
))
‖
‖
.

By the triangle inequality we have

‖
‖
𝜋
𝐺
⟂

𝑖−1

(𝜋𝐹𝑖−1
(𝑎

∗

𝑖
)) − 𝑅𝑖𝜋𝐺

⟂

𝑖−1

(𝜋𝐹𝑖−1
(𝑎

∗

𝑖
))
‖
‖
≤
‖
‖
𝜋
𝐺
⟂

𝑖−1

(𝜋𝐹𝑖−1
(𝑎

∗

𝑖
)) − 𝜋

𝐺
⟂

𝑖−1

(𝑔𝑖)
‖
‖
+
‖
‖
𝜋
𝐺
⟂

𝑖−1

(𝑔𝑖) − 𝑅𝑖𝜋𝐺
⟂

𝑖−1

(𝜋𝐹𝑖−1
(𝑎

∗

𝑖
))
‖
‖
.

(5.4)

The vector 𝜋
𝐺
⟂

𝑖−1

(𝑔𝑖) is equal to 𝑅𝑖𝜋𝐺
⟂

𝑖−1

(𝜋𝐹𝑖−1
(𝑎

∗

𝑖
)) scaled by a positive factor, thus the

right-hand side of (5.4) is equal to

‖
‖
𝜋
𝐺
⟂

𝑖−1

(𝜋𝐹𝑖−1
(𝑎

∗

𝑖
)) − 𝜋

𝐺
⟂

𝑖−1

(𝑔𝑖)
‖
‖
+
|
|
‖
‖
𝜋
𝐺
⟂

𝑖−1

(𝑔𝑖)
‖
‖
−
‖
‖
𝑅𝑖𝜋𝐺

⟂

𝑖−1

(𝜋𝐹𝑖−1
(𝑎

∗

𝑖
))
‖
‖
|
|

(5.5)

and since 𝑅𝑖 is unitary, and by the triangle inequality we obtain that (5.5) is at most

‖
‖
𝜋
𝐺
⟂

𝑖−1

(𝜋𝐹𝑖−1
(𝑎

∗

𝑖
)) − 𝜋

𝐺
⟂

𝑖−1

(𝑔𝑖)
‖
‖
+
‖
‖
𝜋
𝐺
⟂

𝑖−1

(𝑔𝑖) − 𝜋
𝐺
⟂

𝑖−1

(𝜋𝐹𝑖−1
(𝑎

∗

𝑖
))
‖
‖
= 2

‖
‖
𝜋
𝐺
⟂

𝑖−1

(𝜋𝐹𝑖−1
(𝑎

∗

𝑖
)) − 𝜋

𝐺
⟂

𝑖−1

(𝑔𝑖)
‖
‖

≤ 2
‖
‖
𝜋𝐹𝑖−1

(𝑎
∗

𝑖
) − 𝑔𝑖

‖
‖

≤ 2𝛿,

48

5 | APPLICATION TO PROJECTIVE CLUSTERING

since the distance between the projection of two points is at most their original distance

and dist(𝜋𝐹𝑖−1(𝑎
∗

𝑖
), 𝐴) ≤ . ■

Now we can use this lemma to finish the proof of the correctness of Algorithm 2 by

proving Theorem 51.

Proof of Theorem 51. Let 𝐶
∗
= {𝑊0, … ,𝑊𝑘} be an optimal solution with cost equals to 𝐵

∗
.

Suppose that 𝐵
∗
≤ 𝐵. Consider a partition of 𝐴 = 𝑆1 ∪ ⋯ ∪ 𝑆𝑘 with the property that

𝑆𝑖 =

{

𝑎 ∈ 𝐴 ∶ ∀ 𝑖
′
≠ 𝑖, dist(𝑎, 𝑊𝑖) ≤ dist(𝑎, 𝑊𝑖

′)

}

.

Notice that

𝑘

∑

𝑖=1

dist
2

(𝑆𝑖, 𝑊𝑖) = dist
2

(𝐴, 𝐶
∗
) ≤ 𝐵

and that the 𝛿-net 𝐷 of radius  for 𝐴 is also a 𝛿-net of radius  for 𝑆𝑖, for every 𝑖 = 1, … , 𝑘.

By our choice of , we have that for every 𝑖 = 1, … , 𝑘

√

dist
2

(𝑆𝑖, 𝑊𝑖) ≤

√

dist
2

(𝐴, 𝐶
∗
)

≤

√

𝐵 + 2𝛿𝑗 ≤ .

Therefore by Lemma 52 there exists a subspace 𝐹𝑖 spanned by 𝑗 points of 𝐷 such that

dist
2

(𝑆𝑖, 𝐹𝑖) ≤ dist
2

(𝑆𝑖, 𝑊𝑖) + 4𝑗
2
𝛿
2
𝑛 + 4𝑗𝛿∑

𝑎∈𝑆𝑖

dist(𝑎, 𝑊𝑖). (5.6)

We can bound the last sum of the right-hand side of (5.6) with Cauchy-Swartz inequality

to obtain

∑

𝑎∈𝑆𝑖

dist(𝑎, 𝑊𝑖) ≤

√

𝑛

√

dist
2

(𝑆𝑖, 𝑊𝑖).

This together with our choice of 𝛿 = 𝜀

√

𝐵/(8𝑗𝑘

√

𝑛) give

dist
2

(𝑆𝑖, 𝐹𝑖) ≤ dist
2

(𝑆𝑖, 𝑊𝑖) +

4𝜀
2
𝐵

8
2
𝑘
2
+

4𝜀

√

dist
2

(𝑆𝑖, 𝑊𝑖)

√

𝐵

8𝑘

≤ dist
2

(𝑆𝑖, 𝑊𝑖) +

𝜀𝐵

2𝑘

+

𝜀𝐵

2𝑘

≤ dist
2

(𝑆𝑖, 𝑊𝑖) +

𝜀𝐵

𝑘

.

Let 𝐶 = {𝐹1, … , 𝐹𝑘}. The cost of 𝐶 can be bounded as

5.1 | A (1 + 𝜀)-APPROXIMATION FOR PROJECTIVE CLUSTERING

49

dist
2

(𝐴, 𝐶) ≤

𝑘

∑

𝑖=1

dist
2

(𝑆𝑖, 𝐹𝑖)

≤

𝑘

∑

𝑖=1

dist
2

(𝑆𝑖, 𝑊𝑖) +

𝜀𝐵

2𝑘

= dist
2

(𝐴, 𝐶
∗
) + 𝜀𝐵 = 𝐵

∗
+ 𝜀𝐵.

Algorithm 2 will enumerate all choices of subspaces spanned by 𝐷. At some point it

will hit 𝐹1, … , 𝐹𝑘, and compute its cost. Therefore the solution returned will have cost at

most dist
2

(𝐴, 𝐶) ≤ 𝐵
∗
+ 𝜀𝐵. ■

The approximation we obtain from Algorithm 2 depends on the parameter 𝐵, and it is

not a (1 + 𝜀)-approximation. To be more precise, this algorithm give a (1 + 𝜀(𝐵/𝐵
∗
))-ap-

proximation, since 𝐵
∗
+ 𝜀𝐵 = (1 + 𝜀(𝐵/𝐵

∗
))𝐵

∗
.

To obtain a (1 + 𝜀)-approximation, we will need to study some properties of this

algorithm to improve it. The first property of Algorithm 2 we note is that if the 𝛿-net 𝐷

contains the instance 𝐴, and the cost of an optimal solution is zero, then it will return an

optimal solution. This is clear since if the cost of a solution is zero, it must be optimal and

it must be that 𝐴 is contained in it. Therefore the algorithm will enumerates the elements

of 𝐴 and test the subspace that contains span(𝐴), obtaining the solution of cost zero.

The second property is that Algorithm 2 always returns a viable solution for ever

parameter 𝜀 ∈ (0, 1) and 𝐵 > 0, since for every 𝛿 > 0 and  > 0 we can build a 𝛿-net of

radius . The algorithm will then enumerate the solutions spanned by it and return the

one with minimum cost. This will be useful for identifying lower bounds of the cost of an

optimal solution.

Corollary 55. Suppose that 𝐴 ∈ ℝ
𝑑×𝑛

is an instance of linear 𝑗-subspace 𝑘-clustering problem,

the cost of an optimal solution is 𝐵
∗
, and 𝜀 ∈ (0, 1) is fixed. Suppose also that 𝐵 > 0 is fixed,

and that the cost of the solution returned by Algorithm 2 with input (𝐴, 𝜀, 𝐵) is 𝐵. If

𝐵 > (1 + 𝜀)𝐵,

then 𝐵 < 𝐵
∗
. When this happens we say that 𝐵 is a certified lower bound for the pair (𝐴, 𝜀).

Proof. By Theorem 51, if 𝐵 ≥ 𝐵
∗
, then the cost of the returned solution 𝐵 will be at

most 𝐵
∗
+ 𝜀𝐵 ≤ (1 + 𝜀)𝐵. Since 𝐵 > (1 + 𝜀)𝐵, we must have 𝐵 < 𝐵

∗
. ■

Corollary 55 allows us to know when the cost of the solution we tried was too low. If

we run Algorithm 2 with input (𝐴, 𝜀, 𝐵) and (1 + 𝜀)𝐵 < 𝐵
∗
, then 𝐵 will be a certified lower

bound for (𝐴, 𝜀) since we cannot have a solution with cost lower than 𝐵
∗
. This can be used

as a parameter to evaluate 𝐵; if the cost of the solution returned is higher than (1 + 𝜀)𝐵,

then 𝐵 is a certified lower bound for (𝐴, 𝜀). Else 𝐵 is an upper bound for 𝐵
∗

and we can keep

the solution returned. Designing a binary search algorithm to find a (1 + 𝜀)-approximation

is now straightforward, as we show in Algorithm 3.

50

5 | APPLICATION TO PROJECTIVE CLUSTERING

Algorithm 3: A (1 + 𝜀)-approximation for linear 𝑗-subspace 𝑘-clustering

Input: A matrix 𝐴 ∈ ℝ
𝑑×𝑛

, a parameter 𝜀 ∈ (0, 1).

Output: A set 𝐶 ∶= {𝐹1, … , 𝐹𝑘} of 𝑘 subspaces of dimension 𝑗 .

1 Set 𝐵 as any upper bound for the cost of an optimal solution ;

/* A valid initialization value for 𝐵 would be ‖𝐴‖
2

𝐹
*/

2 Set 𝐶 as the solution returned by Algorithm 2 with input (𝐴, 𝜀/3, 𝐵);

3 Set 𝛽 ∶= dist
2

(𝐴, 𝐶);

4 if 𝛽 = 0 then
5 Return 𝐶;

/* Start the loop to find a lower bound for the cost 𝐵
∗ of an op-

timal solution */

6 Set 𝐶 ∶= 𝐶;

7 Set 𝐵0 ∶= 𝐵;

8 Set 𝑖 ∶= 0;

9 while 𝛽 ≤ (1 + 𝜀/3)𝐵𝑖 do
10 𝑖 ∶= 𝑖 + 1;

11 𝐶 ∶= 𝐶; // Note that dist
2

(𝐴, 𝐶) ≤ (1 + 𝜀/3)𝐵𝑖−1

12 𝐵𝑖 ∶= 𝐵𝑖−1/2;

13 Update 𝐶 with the solution returned by Algorithm 2 with input (𝐴, 𝜀/3, 𝐵𝑖);

14 Update 𝛽 with the cost of 𝐶;

/* Note that 𝐵𝑖 is a lower bound for 𝐵
∗. Now we start the binary

search. */
15 Set 𝑙𝑜 ∶= 𝐵𝑖;

16 Set ℎ𝑖 ∶= 𝐵𝑖−1;

17 Set 𝑚𝑖𝑑 ∶= (ℎ𝑖 + 𝑙𝑜)/2;

18 while ℎ𝑖 − 𝑙𝑜 > (𝜀/3)𝐵𝑖 do
19 Update 𝐶 with the solution returned by Algorithm 2 with input (𝐴, 𝜀/3, 𝑚𝑖𝑑);

20 Update 𝛽 with dist
2

(𝐴, 𝐶);

21 if 𝛽 ≤ (1 + 𝜀/3)𝑚𝑖𝑑 then
22 ℎ𝑖 ∶= 𝑚𝑖𝑑;

23 𝐶 ∶= 𝐶 ; // Note that dist
2

(𝐴, 𝐶) ≤ (1 + 𝜀/3)ℎ𝑖

24 else
25 Update 𝑙𝑜 with 𝑚𝑖𝑑;

26 𝑚𝑖𝑑 ∶= (ℎ𝑖 + 𝑙𝑜)/2;

27 Return 𝐶;

5.1 | A (1 + 𝜀)-APPROXIMATION FOR PROJECTIVE CLUSTERING

51

To obtain an upper bound for the time complexity of Algorithm 3 we will first bound

the number of executions of the loops on lines 9 and 18, since these equals the number of

times Algorithm 2 is executed.

Fact 56. The while-loop on line 9 is executed at most log
2
(𝐵/𝐵

∗
) + 2 times.

Proof. Each time this loop is executed, the value we are guessing for the lower bound of 𝐵
∗

is halved. Let 𝑖 be the number of executions of the loop such that (1+𝜀)𝐵𝑖 < 𝐵
∗
≤ (1+𝜀)𝐵𝑖−1.

Then it is guaranteed that the condition of the while-loop on line 9 will have already been

violated at step 𝑖. Using that 𝜀 ∈ (0, 1), we can conclude that

𝐵
∗
≤ (1 + 𝜀)𝐵𝑖−1 < 2𝐵𝑖−1 = 𝐵/2

𝑖−2
,

therefore

log
2
(

𝐵

𝐵
∗)

≥ 𝑖 − 2

and thus the number of executions of the loop will be at most log
2
(𝐵/𝐵

∗
) + 2. ■

Fact 57. The while-loop on line 18 is executed at most log
2
(3/𝜀) + 1 times.

Proof. The binary search starts with an interval of length 𝐵𝑖−1−𝐵𝑖, and ends when the inter-

val has length at most (𝜀/3)𝐵𝑖. Also note that by definition 𝐵𝑖 = 𝐵𝑖−1/2, hence 𝐵𝑖−1 − 𝐵𝑖 = 𝐵𝑖.

At each step the search interval is halved, therefore if after exactly 𝑠 steps the search interval

shrink to at most (𝜀/3)𝐵𝑖 we have

𝐵𝑖−1 − 𝐵𝑖

2
𝑠

=

𝐵𝑖

2
𝑠
≤ (𝜀/3)𝐵𝑖 ≤

𝐵𝑖

2
𝑠−1

.

From the right-hand side inequality we obtain

𝑠 − 1 ≤ log
2
(

3𝐵𝑖

𝜀𝐵𝑖
)

= log
2
(

3

𝜀)
.

Rearranging we obtain the desired bound. ■

The time complexity of Algorithm 3 follows directly from Fact 56 and 57:

𝑂

((

𝑗𝑘𝑛𝑑

𝜀)

3𝑗𝑘𝑑

log
(

𝐵

𝜀𝐵
∗))

.

This value depends on the relationship between 𝐵 and 𝐵
∗
. In line 1 if the value 𝐵 is

initialized such that 𝐵/𝐵
∗

is at most an exponential in 𝑛, we would have a polynomial

time complexity in 𝑛. It remains to show that the solution returned by Algorithm 3 is

correct.

Lemma 58. The solution 𝐶 returned by Algorithm 3 with input (𝐴, 𝜀) is a (1 + 𝜀)-approxi-

mation for 𝐴.

52

5 | APPLICATION TO PROJECTIVE CLUSTERING

Proof. Let 𝐵
∗

be the cost of an optimal solution. Algorithm 3 can return a solution in two

places. If the returns occurs in line 5, then the solution must be optimal, since it has cost

zero, and therefore it trivially is a (1 + 𝜀)-approximation. Else, the algorithm continues

past line 5. Before the execution of line 9 we have the following relation between 𝐶 and 𝐵0.

dist
2

(𝐴, 𝐶) ≤ (1 + 𝜀/3)𝐵0.

This follows from Theorem 51, since 𝐵 is an upper bound of the value 𝐵
∗
. After the 𝑖

th

execution of the while-loop on line 9, the same invariant is true.

dist
2

(𝐴, 𝐶) ≤ (1 + 𝜀/3)𝐵𝑖−1.

This follows from the fact that 𝐶 is updated with 𝐶 only when in the previous itera-

tion dist
2

(𝐴, 𝐶) ≤ (1+𝜀/3)𝐵𝑖 (the value of 𝑖 is incremented at the start of the loop, thus 𝐵𝑖−1

is equal to 𝐵𝑖 of the previous iteration).

Before the execution of the while-loop on line 18, by Corollary 55 the value 𝑙𝑜 is a certi-

fied lower bound for (𝐴, 𝜀/3), and by the above argument, we have dist
2

(𝐴, 𝐶) ≤ (1 + 𝜀/3)ℎ𝑖.

This will be the invariant during the execution of this loop.

During each execution of the while-loop on line 18, the solution 𝐶 will be updated

with 𝐶 only when dist
2

(𝐴, 𝐶) ≤ (1+𝜀/3)𝑚𝑖𝑑 and ℎ𝑖 is updated with the value 𝑚𝑖𝑑. Also, the

variable 𝑙𝑜 will be updated with 𝑚𝑖𝑑 only when 𝑚𝑖𝑑 is a certified lower bound for (𝐴, 𝜀/3).

After the execution of the while-loop on line 18, the algorithm returns the solution 𝐶.

From the above argument, we have the following inequalities:

ℎ𝑖 − 𝑙𝑜 ≤ (𝜀/3)𝑙𝑜, (5.7)

dist
2

(𝐴, 𝐶) ≤ (1 + 𝜀/3)ℎ𝑖, (5.8)

𝑙𝑜 < 𝐵
∗
. (5.9)

From inequality (5.7), we have

ℎ𝑖 ≤ (1 + 𝜀/3)𝑙𝑜. (5.10)

Applying (5.10) in (5.8) and from the fact that 𝜀 ∈ (0, 1)

dist
2

(𝐴, 𝐶) ≤ (1 + 𝜀/3)
2
𝑙𝑜 ≤ (1 + 𝜀)𝑙𝑜. (5.11)

Applying inequality (5.9) in (5.11) we conclude that dist
2

(𝐴, 𝐶) ≤ (1 + 𝜀)𝐵
∗
. ■

Remark: Even though we have obtained a (1 + 𝜀)-approximation scheme for the lin-

ear 𝑗-subspace 𝑘-clustering problem, we cannot claim we have obtained a PTAS, since the

time complexity depends on the term log(𝐵/𝜀𝐵
∗
). This dependence is necessary because our

chosen model of computation allows the representation of any real using 𝑂(1) of memory

space. This allows the existence of a family of instances with constant size that has at least

one solution with constant cost but optimal solution arbitrarily small. Therefore we could

5.2 | FASTER APPROXIMATION USING 𝜀-SKETCHES

53

have values of 𝐵/𝐵
∗

arbitrarily large, and Algorithm 3 would not be polynomial in the size of

the input. See the appendix B for an example of such a family.

5.2 Faster approximation using 𝜀-sketches

The algorithm we saw finds an approximation for the linear 𝑗-subspace 𝑘-clustering

problem, but its time complexity has an exponential dependence in the dimension of

the space. By using our developed low rank 𝜀-sketch, we can mitigate the effect of the

dimension at the cost of using a randomized algorithm. The following fact shows how we

can do that.

Fact 59. Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix and let 𝜀 ∈ (0, 1/3) be fixed. Suppose that 𝐴 ∈ ℝ
𝑑×𝑛

is

an 𝜀-sketch for 𝐴 for the linear 𝑗-subspace 𝑘-clustering problem and 𝛼 > 1 is a fixed real. If

an algorithm  is an 𝛼-approximation for the linear 𝑗-subspace 𝑘-clustering problem, then

the output of (𝐴) will be an 𝛼(1 + 3𝜀)-approximation for 𝐴.

Proof. Suppose that 𝐶 is the output of (𝐴), that 𝐶 is the output of (𝐴), that 𝐶
∗

is an opti-

mal solution for 𝐴 and 𝐶
∗

is an optimal solution for 𝐴. Since  outputs an 𝛼-approximation

for every matrix, we have

dist
2

(𝐴, 𝐶) ≤ 𝛼 dist
2

(𝐴, 𝐶
∗
).

From the 𝜀-sketch property, we have that there exists a non-negative constant Δ such

that

dist
2

(𝐴, 𝐶
∗
) + Δ ≤ (1 + 𝜀) dist

2

(𝐴, 𝐶
∗
) (5.12)

and

(1 − 𝜀) dist
2

(𝐴, 𝐶) ≤ dist
2

(𝐴, 𝐶) + Δ. (5.13)

Also since 𝐶 is an 𝛼-approximation for 𝐴, we have that

dist
2

(𝐴, 𝐶) ≤ 𝛼 dist
2

(𝐴, 𝐶
∗
) ≤ 𝛼 dist

2

(𝐴, 𝐶
∗
). (5.14)

Therefore from inequalities (5.12) and (5.14), and from the fact that Δ is non-negative

we can deduce that

dist
2

(𝐴, 𝐶) + Δ ≤ 𝛼(dist
2

(𝐴, 𝐶
∗
) + Δ) ≤ 𝛼(1 + 𝜀) dist

2

(𝐴, 𝐶
∗
).

From inequality (5.13) it follows that

(1 − 𝜀) dist
2

(𝐴, 𝐶) ≤ dist
2

(𝐴, 𝐶) + Δ ≤ 𝛼(1 + 𝜀) dist
2

(𝐴, 𝐶
∗
),

which implies

dist
2

(𝐴, 𝐶) ≤ 𝛼

(1 + 𝜀)

(1 − 𝜀)

dist
2

(𝐴, 𝐶
∗
).

Since 𝜀 ≤ 1/3, we have that (1 + 𝜀)/(1 − 𝜀) ≤ 1 + 3𝜀, finishing the proof. ■

54

5 | APPLICATION TO PROJECTIVE CLUSTERING

Obtaining a (1 + 𝜀)-approximation for the linear 𝑗-subspace 𝑘-clustering problem

without an exponential dependence on the dimension is now straightforward: we can

adjust the input of Algorithm 3 so that it returns a (1 + 𝜀/3)-approximation, and we can

use an (𝜀/9)-sketch 𝐴. Using that (1 + 𝜀/3)
2
≤ 1 + 𝜀 we have that by Fact 59 the output of

Algorithm 3 with input (𝐴, 𝜀/3) is an (1 + 𝜀)-approximation.

What would be the time complexity to find such an approximation with that sketch? We

could argue that since 𝐴 is a 𝑑 × 𝑛 matrix, the time complexity of Algorithm 3 would be the

same as using 𝐴 in the input. But we have to remember that the rank of 𝐴 is proportional to

the dimensionality of the problem. Since in the linear 𝑗-subspace 𝑘-clustering problem the

underlying family  is 𝑗𝑘-dimensional, by Theorem 45 we have
1
rank(𝐴) = 648𝜀

−2
𝑗𝑘. Using

the ideas of Section 3.1, we can define a new matrix 𝐴
′
∈ ℝ

⌈648𝜀
−2
𝑗𝑘⌉×𝑛

that is an isometric

embedding of the points of 𝐴 into ℝ
⌈648𝜀

−2
𝑗𝑘⌉

, and define a new linear 𝑗-subspace 𝑘-clustering

problem in ℝ
⌈648𝜀

−2
𝑗𝑘⌉

such that every solution for 𝐴
′

can be mapped back to ℝ
𝑑

while

preserving the cost for 𝐴.

Now Algorithm 3 with input (𝐴
′
, 𝜀/3) will be executed in time

𝑂

((

𝑗
2
𝑘
2
𝑛

𝜀
3)

3𝑗𝑘⌈648𝜀
−2
𝑗𝑘⌉

log
(

𝐵

𝜀𝐵
∗))

.

Using Algorithm 1 to find a matrix that with probability at least 1/2 is the de-

sired 𝜀-sketch 𝐴 takes time

𝑂(𝑛𝑑𝑗
2
𝑘
2
𝜀
−8
log

2

(𝜀
−2
𝑗𝑘)).

We can find 𝐴
′

by embedding 𝐴 onto span(𝐴). If 𝐵 ∈ ℝ
𝑑×⌈648𝜀

−2
𝑗𝑘⌉

is a matrix with

orthonormal columns that spans 𝐴, then a matrix that works as 𝐴
′

is

𝐴
′
∶= 𝐵

𝑇
𝐴.

Finding such a matrix 𝐵 and computing the product takes time 𝑂(𝑛𝑑𝜀
−4
𝑗
2
𝑘
2
). Given

a solution 𝐶 in ℝ
⌈648𝜀

−2
𝑗𝑘⌉

, it is straightforward to see that the solution 𝐵𝐶 ⊂ ℝ
𝑑

will

have dist
2

(𝐴, 𝐵𝐶) = dist
2

(𝐴
′
, 𝐶).

The final time complexity is

𝑂

(

𝑛𝑑𝑗
2
𝑘
2
log

2

(𝜀
−2
𝑗𝑘)

𝜀
8

+
(

𝑗
2
𝑘
2
𝑛

𝜀
3)

1947𝜀
−2
𝑗
2
𝑘
2

log
(

𝐵

𝜀𝐵
∗))

,

and this algorithm will be correct with probability at least 1/2, but this can be increased

to 1 − 𝛿 for any 𝛿 ∈ (0, 1), as we saw in Algorithm 1 remark.

We have thus obtained a PRAS for the linear 𝑗-subspace 𝑘-clustering problem. The

probability that 𝐴 is an (𝜀/9)-sketch is at least 1/2, but we saw that it can be improved

to 1 − 𝛿 for any 𝛿 ∈ (0, 1) by running independent instances of the sketch.

1
The value 648 comes from 8 ⋅ 9

2
, with the factor 8 coming from Theorem 45, and the factor 9

2
coming from

the fact we are using an 𝜀/9-sketch.

55

Chapter 6

Conclusion and further
questions

In this work we have presented recent results about approximations for the (𝓁
2

2
,)-clus-

tering problem via dimension reduction. We showed how we can exploit inputs with low

rank to obtain faster algorithms, we defined a type of approximation with sketches of the

input, and we presented a randomized algorithm that finds a low-rank 𝜀-sketch of the

input in linear time with respect to the number of points of the input and the dimension.

We have also presented an application of the 𝜀-sketch to find an approximation for the

linear 𝑗-subspace 𝑘-clustering problem, showing how we can improve the time complexity

from an exponential dependence in the dimension to a polynomial one.

There are still multiple questions that can be explored about the (𝓁
2

2
,)-clustering prob-

lem and our 𝜀-sketch. We saw that, when  is an 𝑚-dimensional family, we can efficiently

find an 𝜀-sketch of rank 𝑂(𝜀
−2
𝑚) for any instance. But for the 𝑚-means clustering Cohen

et al., 2015 and Makarychev, Makarychev, and Razenshteyn, 2019 obtained better

bounds, respectively 𝑂(𝑚/𝜀) and 𝑂(𝜀
−2
log(𝑚/𝜀)). Can better upper bounds for the rank

of 𝜀-sketches be obtained for the (𝓁
2

2
,)-clustering problem or the linear 𝑗-subspace 𝑘-clus-

tering problem? It would be interesting also to investigate lower bounds, i. e., if there are

instances of the (𝓁
2

2
,)-clustering problem that does not admit an 𝜀-sketch of rank too

low.

To obtain our 𝜀-sketches, we required the exact computation of the singular value

decomposition of a matrix, therefore our model of computation must compute real numbers.

How should Theorem 37 be modified if we only have floating point arithmetic? There are

interesting questions we did not explore in the field of numerical analysis.

Our analysis showed that Algorithm 3 is not necessarily polynomial in the real RAM

model. It would be interesting to find out if this algorithms would still be a (1 + 𝜀)-ap-

proximation if we only have floating point arithmetic or we only have rational numbers,

and what would be the complexity of this algorithm with these restrictions, and in other

models of computation.

56

Appendix A

Additional proofs

Here we prove inequality (2.8) necessary in the proof of Corollary 26, stated in Chapter 2,

Section 2.3.

Fact 60. Fix 𝜀 ∈ (0, 1) and 𝛿 ∈ (0, 1). If 𝑓 is drawn from a 𝐽 𝐿𝑇 (𝜀, 𝛿, 𝑛) then for all set 𝐴

with |𝐴| = 𝑛 and 0 ∈ 𝐴 with probability 1 − 𝛿 we have that for all pairs 𝑥, 𝑦 ∈ 𝐴

(1 − 𝜀)‖𝑥 + 𝑦‖
2
≤ ‖𝑓 (𝑥) + 𝑓 (𝑦)‖

2
≤ (1 + 𝜀)‖𝑥 + 𝑦‖

2
. (2.9 revisited)

Proof. For any vector 𝑣, we have ‖𝑣‖
2
= ⟨𝑣, 𝑣⟩. Applying this to 𝑣 = 𝑥 − 𝑦 and 𝑣 = 𝑥 + 𝑦 we

deduce that

2 ⟨𝑥, 𝑦⟩ = ‖𝑥‖
2
+ ‖𝑦‖

2
− ‖𝑥 − 𝑦‖

2

and

2 ⟨𝑥, 𝑦⟩ = −‖𝑥‖
2
− ‖𝑦‖

2
+ ‖𝑥 + 𝑦‖

2
.

Now by subtracting one equation from another and rearranging we arrive at

‖𝑥 + 𝑦‖
2
= 2‖𝑥‖

2
+ 2‖𝑦‖

2
− ‖𝑥 − 𝑦‖

2
.

This is true in particular to

‖𝑓 (𝑥) + 𝑓 (𝑦)‖
2
= 2‖𝑓 (𝑥)‖

2
+ 2‖𝑓 (𝑦)‖

2
− ‖𝑓 (𝑥) − 𝑓 (𝑦)‖

2
,

and since 𝑓 is an 𝐽 𝐿𝑇 (𝜀, 𝛿, 𝑛), the null vector belongs to 𝐴 and 𝑓 (0) = 0 Therefore we have

‖𝑓 (𝑥) + 𝑓 (𝑦)‖
2
≤ (1 + 𝜀)(2‖𝑥‖

2
+ 2‖𝑦‖

2
− ‖𝑥 − 𝑦‖

2
) = (1 + 𝜀)‖𝑥 + 𝑦‖

2
.

The lower bound is analogous. ■

Here we prove Lemma 27 stated in Chapter 2, Section 2.3, Subsection 2.3.1.

Lemma 27. Fix 𝜀 ∈ (0, 1) and let 𝑆 ∈ ℝ
⌈𝜀

−2
⌉×𝑑

be a normalized Johnson-Lindenstrauss matrix.

A | ADDITIONAL PROOFS

57

Then for any 𝑥, 𝑦 ∈ ℝ
𝑑

we have that

𝔼 [⟨𝑆𝑥, 𝑆𝑦⟩] = ⟨𝑥, 𝑦⟩ ,

and

Var[⟨𝑆𝑥, 𝑆𝑦⟩] ≤ 2𝜀
2
‖𝑥‖

2
‖𝑦‖

2
.

Proof. For an easier notation let 𝑟 = ⌈𝜀
−2
⌉. Let 𝑠𝑖𝑗 be the 𝑖

th
row and 𝑗

th
column entry of 𝑆

and for any vector 𝑥 let 𝑥𝑗 be its 𝑗
th

coordinate. Note that

(𝑆𝑥)𝑖 =

1

√

𝑟

𝑑

∑

𝑗=1

𝑠𝑖𝑗𝑥𝑗

and

⟨𝑥, 𝑦⟩ =

𝑑

∑

𝑗=1

𝑥𝑗𝑦𝑗 .

Then

⟨𝑆𝑥, 𝑆𝑦⟩ =

1

𝑟

𝑟

∑

𝑖=1
(

𝑑

∑

𝑗=1

𝑠𝑖𝑗𝑥𝑗

)(

𝑑

∑

𝑗
′
=1

𝑠𝑖𝑗 ′𝑦𝑗 ′

)

=

1

𝑟

𝑟

∑

𝑖=1

𝑑

∑

𝑗=1

𝑑

∑

𝑗
′
=1

𝑠𝑖𝑗𝑠𝑖𝑗 ′𝑥𝑗𝑦𝑗 ′ . (A.1)

Now, using the expectancy linearity, we obtain

𝔼 [⟨𝑆𝑥, 𝑆𝑦⟩] =

1

𝑟

𝑟

∑

𝑖=1

𝑑

∑

𝑗=1

𝑑

∑

𝑗
′
=1

𝔼[𝑠𝑖𝑗𝑠𝑖𝑗 ′]𝑥𝑗𝑦𝑗 ′ , (A.2)

and since 𝑠𝑖𝑗 is independent of 𝑠𝑖𝑗 ′ when 𝑗 ≠ 𝑗
′
, we have 𝔼[𝑠𝑖𝑗𝑠𝑖𝑗 ′] = 𝔼[𝑠𝑖𝑗]𝔼[𝑠𝑖𝑗 ′] = 0.

When 𝑗 = 𝑗
′

we have that 𝔼[𝑠𝑖𝑗𝑠𝑖𝑗 ′] = 𝔼[𝑠
2

𝑖𝑗
] = 1, and thus

𝔼 [⟨𝑆𝑥, 𝑆𝑦⟩] =

1

𝑟

𝑟

∑

𝑖=1

𝑑

∑

𝑗=1

𝑥𝑗𝑦𝑗 = ⟨𝑥, 𝑦⟩ . (A.3)

To obtain the bound on the variance, we will first bound the second mo-

ment 𝔼 [⟨𝑆𝑥, 𝑆𝑦⟩
2

]. We have that

⟨𝑆𝑥, 𝑆𝑦⟩
2

=

(

1

𝑟

𝑟

∑

𝑖=1

𝑑

∑

𝑗=1

𝑑

∑

𝑗
′
=1

𝑠𝑖𝑗𝑠𝑖𝑗 ′𝑥𝑗𝑦𝑗 ′

)

2

=

1

𝑟
2

𝑟

∑

𝑖=1

𝑟

∑

𝑖
′
=1

𝑑

∑

𝑗=1

𝑑

∑

𝑗
′
=1

𝑑

∑

𝑗
′′
=1

𝑑

∑

𝑗
′′′
=1

𝑠𝑖𝑗𝑠𝑖𝑗 ′𝑠𝑖′𝑗 ′′𝑠𝑖′𝑗 ′′′𝑥𝑗𝑦𝑗 ′𝑥𝑗 ′′𝑦𝑗 ′′′ . (A.4)

58

APPENDIX A

When we apply the linearity of expectancy in (A.4), the main term we need to analyse

is

𝔼[𝑠𝑖𝑗𝑠𝑖𝑗 ′𝑠𝑖′𝑗 ′′𝑠𝑖′𝑗 ′′′]. (A.5)

Note that by independence, if any one pair of index 𝑖𝑗 differs from the other three, then

the term above will be zero since 𝔼[𝑠𝑖𝑗] = 0. Thus we have that

1. When 𝑗 = 𝑗
′ and 𝑗

′′
= 𝑗

′′′
the term (A.5) will be one for any 𝑖 and 𝑖

′
;

2. When 𝑗 = 𝑗
′′ and 𝑗

′
= 𝑗

′′′
the term (A.5) will be one if and only if 𝑖 = 𝑖

′
;

3. When 𝑗 = 𝑗
′′′ and 𝑗

′
= 𝑗

′′
the term (A.5) will be one if and only if 𝑖 = 𝑖

′
.

For any other relation of indexes the term (A.5) will be zero. Therefore

𝔼 [⟨𝑆𝑥, 𝑆𝑦⟩
2

] =

1

𝑟
2

𝑟

∑

𝑖=1

𝑟

∑

𝑖
′
=1

𝑑

∑

𝑗=1

𝑑

∑

𝑗
′′
=1

𝑥𝑗𝑦𝑗𝑥𝑗 ′′𝑦𝑗 ′′ (A.6)

+

1

𝑟
2

𝑟

∑

𝑖=1

𝑑

∑

𝑗=1

𝑑

∑

𝑗
′
=1

𝑥
2

𝑗
𝑦
2

𝑗
′ (A.7)

+

1

𝑟
2

𝑟

∑

𝑖=1

𝑑

∑

𝑗=1

𝑑

∑

𝑗
′
=1

𝑥𝑗𝑦𝑗𝑥𝑗 ′𝑦𝑗 ′ , (A.8)

where parcel (A.6) is due to item 1, parcel (A.7) is due to item 2 and parcel (A.8) is due to

item 3.

Each parcel can be bounded. For parcel (A.6) we have

1

𝑟
2

𝑟

∑

𝑖=1

𝑟

∑

𝑖
′
=1

𝑑

∑

𝑗=1

𝑑

∑

𝑗
′′
=1

𝑥𝑗𝑦𝑗𝑥𝑗 ′′𝑦𝑗 ′′ = ⟨𝑥, 𝑦⟩
2

= 𝔼[⟨𝑆𝑥, 𝑆𝑦⟩]
2
.

For parcel (A.7) we have

1

𝑟
2

𝑟

∑

𝑖=1

𝑑

∑

𝑗=1

𝑑

∑

𝑗
′
=1

𝑥
2

𝑗
𝑦
′2

𝑗
=

1

𝑟

‖𝑥‖
2
‖𝑦‖

2
.

For parcel (A.8) by Cauchy-Schwartz we have

1

𝑟
2

𝑟

∑

𝑖=1

𝑑

∑

𝑗=1

𝑑

∑

𝑗
′
=1

𝑥𝑗𝑦𝑗𝑥𝑗 ′𝑦𝑗 ′ =

1

𝑟

⟨𝑥, 𝑦⟩
2

≤

1

𝑟

‖𝑥‖
2
‖𝑦‖

2
.

A | ADDITIONAL PROOFS

59

Finally, by the definition of variance we have

Var[⟨𝑆𝑥, 𝑆𝑦⟩] = 𝔼[⟨𝑆𝑥, 𝑆𝑦⟩
2

] − 𝔼[⟨𝑆𝑥, 𝑆𝑦⟩]
2

≤

2

𝑟

‖𝑥‖
2
‖𝑦‖

2
+ ⟨𝑥, 𝑦⟩

2

− ⟨𝑥, 𝑦⟩
2

≤ 2𝜀
2
‖𝑥‖

2
‖𝑦‖

2
,

completing the proof. ■

Here we prove Lemma 46, Stated in Chapter 4, Section 4.2.

Lemma 46 (Weak triangle inequality). Let 𝑝, 𝑞 ∈ ℝ
𝑑

be fixed and let 𝐶 ⊂ ℝ
𝑑

be a non-empty

set. For all 𝜀 ∈ (0, 1), we have

|
|
dist

2

(𝑝, 𝐶) − dist
2

(𝑞, 𝐶)
|
|
≤ 𝜀 dist

2

(𝑝, 𝐶) +

2

𝜀

‖𝑝 − 𝑞‖
2

. (4.18 revisited)

Proof. From factoring the right-hand side of inequality (4.18) we obtain

|
|
dist

2

(𝑝, 𝐶) − dist
2

(𝑞, 𝐶)
|
|
= |dist(𝑝, 𝐶) − dist(𝑞, 𝐶)| ⋅ (dist(𝑝, 𝐶) + dist(𝑞, 𝐶)) . (A.9)

From usual metric space triangle inequality we have that for any two points 𝑝, 𝑞 ∈ ℝ
𝑑

and a set 𝐶 ⊂ ℝ
𝑑

|dist(𝑝, 𝐶) − dist(𝑞, 𝐶)| ≤ ‖𝑝 − 𝑞‖ . (A.10)

Using inequality (A.10) on each factor of inequality (A.9) we obtain

|dist(𝑝, 𝐶) − dist(𝑞, 𝐶)| ⋅ (dist(𝑝, 𝐶) + dist(𝑞, 𝐶))

≤ ‖𝑝 − 𝑞‖ (dist(𝑝, 𝐶) + dist(𝑝, 𝐶) − dist(𝑝, 𝐶) + dist(𝑞, 𝐶) + ‖𝑝 − 𝑞‖) (A.11)

≤ ‖𝑝 − 𝑞‖ (2 dist(𝑝, 𝐶) + ‖𝑝 − 𝑞‖) (A.12)

= 2 ‖𝑝 − 𝑞‖ dist(𝑝, 𝐶) + ‖𝑝 − 𝑞‖
2

. (A.13)

Now using that 𝜀 ≠ 0 we have expression (A.13) equals

2 dist(𝑝, 𝐶)

√

𝜀

1

√

𝜀

‖𝑝 − 𝑞‖ + ‖𝑝 − 𝑞‖
2

. (A.14)

Finally we use that for any two reals 𝑎 and 𝑏 it is true that 2𝑎𝑏 ≤ 𝑎
2
+ 𝑏

2
to bound

2 dist(𝑝, 𝐶)

√

𝜀

1

√

𝜀

‖𝑝 − 𝑞‖ + ‖𝑝 − 𝑞‖ . ≤ 𝜀 dist
2

(𝑝, 𝐶) +

1

𝜀

‖𝑝 − 𝑞‖
2

+ ‖𝑝 − 𝑞‖
2

≤ 𝜀 dist
2

(𝑝, 𝐶) +

2

𝜀

‖𝑝 − 𝑞‖ ,

finishing the proof. ■

Here we construct a 𝛿-net for the origin, necessary for Algorithm 2 in Chapter 5,

Section 5.1.

60

APPENDIX A

Fact 61. For every  > 0 and every 𝛿 > 0, if 𝐻 ⊂ ℝ
𝑑

is a (𝛿−1
𝑑
−1/2

)-fine grid of

dimension 𝑑 then

𝐻
′
= {ℎ ∶ ∀ℎ ∈ 𝐻}

is a 𝛿-net for the origin.

Proof. Let 𝑥 ∈ ℝ
𝑑

such that ‖𝑥‖ ≤ . We will find an 𝑦 ∈ 𝐻
′

that is close enough to 𝑥 .

Suppose that 𝑒1, … , 𝑒𝑑 are the vectors of the canonical base. There exists reals 𝛼1, … , 𝛼𝑑

such that

𝑥 =

𝑑

∑

𝑖=1

𝛼𝑖𝑒𝑖.

Note that for every 𝑖 = 1, … , 𝑑 we have |𝛼𝑖| ≤ . We will now define each coordinate

of a vector 𝑦 ∈ 𝐻
′

such that ‖𝑥 − 𝑦‖ ≤ 𝛿. For every 𝑖 = 1, … , 𝑑, let

𝑐𝑖 ∶=
⌊
𝛼𝑖

√

𝑑

𝛿 ⌋
.

From the fact that |𝛼𝑖| ≤ , we conclude that 𝑐𝑖 ∈ [−𝑑
1/2𝛿

−1
, 𝑑

1/2𝛿
−1
] ∩ ℤ. Therefore

the vector

𝑦 ∶=

𝑑

∑

𝑖=1

𝛿

√

𝑑

𝑐𝑖𝑒𝑖

is a member of 𝐻
′
. Now we bound the distance ‖𝑥 − 𝑦‖.

‖𝑥 − 𝑦‖ =

√

𝑑

∑

𝑖=1

(
𝛼𝑖 −

𝛿

√

𝑑 ⌊
𝛼𝑖

√

𝑑

𝛿 ⌋)

2

=

√

𝑑

∑

𝑖=1

(

𝛿

√

𝑑 (
𝛼𝑖

√

𝑑

𝛿

−
⌊
𝛼𝑖

√

𝑑

𝛿 ⌋))

2

,

and from the definition of floor function we can conclude that

√

𝑑

∑

𝑖=1

(

𝛿

√

𝑑 (
𝛼𝑖

√

𝑑

𝛿

−
⌊
𝛼𝑖

√

𝑑

𝛿 ⌋))

2

≤

√

𝑑

∑

𝑖=1

(

𝛿

√

𝑑)

2

≤ 𝛿,

and thus ‖𝑥 − 𝑦‖ ≤ 𝛿. ■

61

Appendix B

Constant size family example

Here we show an example of a family of instances of constant size in our model of

computation for Algorithm 3 that takes an arbitrarily large amount of time to execute.

Let 𝑝 be a positive integer and let 𝐴
(𝑝)

∈ ℝ
2×4

be a matrix with columns representing

the vectors 𝑎1 = (

√

2, 0), 𝑎2 = (0,

√

2), 𝑎3 = (𝑝
−2
, 𝑝

−2
) and 𝑎4 = (𝑝

−2
, −𝑝

−2
). Let 𝐿1 be

the subspace spanned by 𝑎1, let 𝐿2 be the subspace spanned by 𝑎2, let 𝐿3 be the subspace

spanned by 𝑎3 and let 𝐿4 be the subspace spanned by 𝑎4.

L2

L4

a4

a3 a2

a1

L3

L1

Figure B.1: A visualisation of the instance 𝐴 and the solutions. The red dots represent the instance.

The green lines represent the solution 𝐶1. The red lines represent the solution 𝐶2.

Let 𝐶1 ∶= 𝐿1 ∪ 𝐿2 and 𝐶2 ∶= 𝐿3 ∪ 𝐿4. Figure B.1 illustrate the instance and the solutions.

We have that

dist
2

(𝐴, 𝐶1) = (dist(𝑎3, 𝐿1))
2
+ (dist(𝑎4, 𝐿2))

2
= 2𝑝

−1
,

and

dist
2

(𝐴, 𝐶2) = (dist(𝑎1, 𝐿3))
2
+ (dist(𝑎2, 𝐿4))

2
= 2.

62

APPENDIX B

Let 𝐵
∗

be the optimal cost for 𝐴 and let 𝐵 ∶= dist
2

(𝐴, 𝐶2). We can see that for any

positive value of 𝑝 we have

𝐵

𝐵
∗
≥ 𝑝.

This means that for any fixed 𝜀 ∈ (0, 1) if we run Algorithm 3 with input (𝐴
(𝑝)
, 𝐵, 𝜀) we

could have an arbitrarily large execution time with an input of constant size, since 𝑝 can

be arbitrarily large and our model of computation can store any real consuming 𝑂(1)

memory space.

63

Appendix C

Quick reference for theorems,
lemmas, corollaries, facts and
definitions

Definition 1. Let 𝐶 ⊂ ℝ
𝑑

be a non-empty set and let 𝑝 ∈ ℝ
𝑑

be a vector. Then

dist(𝑝, 𝐶) ∶= inf {‖𝑝 − 𝑐‖ ∶ 𝑐 ∈ 𝐶} ,

where ‖ ⋅ ‖ is the usual Euclidean norm.

Definition 2. Let 𝐶 ⊂ ℝ
𝑑

be a non-empty set and let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix. Then

dist
2

(𝐴, 𝐶) ∶= ∑

𝑎∈𝐴

(dist(𝑎, 𝐶))
2
.

Definition 3. Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix. The subspace of ℝ
𝑑

spanned by the columns of 𝐴

will be denoted as span(𝐴)

Definition 4. Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix and let 𝑎𝑖𝑗 be the row 𝑖 and column 𝑗 entry of 𝐴. The

Frobenius norm of 𝐴 is

‖𝐴‖𝐹 ∶=

√

𝑑

∑

𝑖=1

𝑛

∑

𝑗=1

𝑎
2

𝑖𝑗
.

Definition 5. We say that a matrix 𝑃 ∈ ℝ
𝑑×𝑗

have orthonormal columns when the

set {𝑝1, … , 𝑝𝑗 } of columns of 𝑃 are linearly independent and all have norm one.

Definition 6 (Orthogonal projection). Let 𝑣 ∈ ℝ
𝑑

be a vector and let 𝐿 be a subspace of ℝ
𝑑
.

Then 𝜋𝐿(𝑣) ∈ ℝ
𝑑

is the orthogonal projection of 𝑣 onto 𝐿.

Definition 7 (Orthogonal projection of a matrix). Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix and let 𝐿 be

a subspace of ℝ
𝑑
. The orthogonal projection of 𝐴 into 𝐿 is the matrix 𝜋𝐿(𝐴) ∈ ℝ

𝑑×𝑛
where

the 𝑖
th

column of 𝜋𝐿(𝐴) is the orthogonal projection of the 𝑖
th

column of 𝐴 into 𝐿.

64

APPENDIX C

Fact 8. Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix, let 𝐿 be a subspace of ℝ
𝑑

of dimension 𝑗 and let 𝑃 ∈ ℝ
𝑑×𝑗

be a matrix with orthonormal columns that spans 𝐿. Then the orthogonal projection 𝜋𝐿(𝐴)

equals 𝑃𝑃
𝑇
𝐴. Also note that

dist
2

(𝐴, 𝐿) = ‖𝐴 − 𝑃𝑃
𝑇
𝐴‖

2

𝐹
.

Definition 9. Let 𝐴 and 𝐵 ∈ ℝ
𝑑×𝑛

be matrices. We will abuse the notation and adopt

that 𝜋𝐵(𝐴) means the same as 𝜋span(𝐵)(𝐴).

Fact 10 (Pythagoras Theorem). Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix, let 𝐿 be a subspace of ℝ
𝑑

of

dimension 𝑗 and let 𝑃 ∈ ℝ
𝑑×𝑗

with orthonormal columns that spans 𝐿. Then it follows from

the Pythagoras Theorem that

‖𝐴‖
2

𝐹
= ‖𝑃𝑃

𝑇
𝐴‖

2

𝐹
+ ‖𝐴 − 𝑃𝑃

𝑇
𝐴‖

2

𝐹
.

Fact 11 (Trace representation). For any real matrix 𝐴, we have that

‖𝐴‖
2

𝐹
= Tr(𝐴

𝑇
𝐴)

and

‖𝐴‖
2

𝐹
= ‖𝐴

𝑇
‖
2

𝐹
.

Fact 12 (Cyclic property of the Trace function). For any matrices 𝐴 ∈ ℝ
𝑑×𝑛

and 𝐵 ∈ ℝ
𝑛×𝑑

,

we have

Tr(𝐴𝐵) = Tr(𝐵𝐴).

Fact 13 (Unitarily invariant norm). Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix, let 𝑃 ∈ ℝ
𝑑×𝑑

and 𝑄 ∈ ℝ
𝑛×𝑛

be

orthogonal matrices and let 𝑆 ∈ ℝ
𝑠×𝑑

be a matrix with orthonormal columns and let 𝑅 ∈ ℝ
𝑛×𝑟

be such that 𝑅
𝑇

has orthonormal columns. Then

‖𝐴‖
2

𝐹
= ‖𝑃𝐴‖

2

𝐹
= ‖𝐴𝑄‖

2

𝐹
= ‖𝑆𝐴‖

2

𝐹
= ‖𝐴𝑅‖

2

𝐹
.

Definition 14 (Big-O notation). For two functions 𝑓 ,𝑔 ∶ ℝ → ℝ, we say that 𝑓 (𝑥) = 𝑂(𝑔(𝑥))

if there exist constants 𝐾 and 𝑥0 such that |𝑓 (𝑥)| ≤ 𝐾|𝑔(𝑥)| for all 𝑥 ≥ 𝑥0. We

say that 𝑓 (𝑥) = Ω(𝑔(𝑥)) if 𝑔(𝑥) = 𝑂(𝑓 (𝑥)). Finally, we say that 𝑓 (𝑥) = Θ(𝑔(𝑥))

if 𝑓 (𝑥) = 𝑂(𝑔(𝑥)) and 𝑓 (𝑥) = Ω(𝑔(𝑥)).

Definition 15 (best-fit linear 𝑗-subspace problem). Let 𝐴 ∈ ℝ
𝑑×𝑛

. The best-fit lin-

ear 𝑗-subspace problem in ℝ
𝑑

is to find a linear subspace 𝑉 of dimension 𝑗 of ℝ
𝑑

that

minimizes dist
2

(𝐴, 𝑉).

Notation 16. Let 𝐴 be a matrix and 1 ≤ 𝑖 ≤ rank(𝐴) an integer. The 𝑖
th

singular value of 𝐴

is denoted 𝜎𝑖(𝐴).

Definition 17. Let𝐴 ∈ ℝ
𝑑×𝑛

be a matrix. A first left singular vector of𝐴 is any vector 𝑢1 ∈ ℝ
𝑑

such that

𝑢1 ∶= argmax

{

‖𝑢
𝑇
𝐴‖𝐹 ∶ ‖𝑢‖ = 1

}

,

C | QUICK REFERENCE FOR THEOREMS

65

and the first singular value is

𝜎1 ∶= ‖𝑢
𝑇

1
𝐴‖𝐹 .

We say that 𝑢1 is the left singular vector associated with the singular value 𝜎1.

Fact 18. The matrix 𝐴𝑘 is the orthogonal projection of 𝐴 to the subspace spanned by the

first 𝑘 left singular vectors 𝑢1, … , 𝑢𝑘.

Fact 19. The matrix 𝐴𝑘 is a best rank 𝑘 approximation of 𝐴 in the Frobenius norm, that is,

for any matrix 𝐵 ∈ ℝ
𝑑×𝑛

with rank at most 𝑘 we have

‖𝐴 − 𝐴𝑘‖𝐹 ≤ ‖𝐴 − 𝐵‖𝐹 . (2.4)

Fact 20. Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix of rank 𝑟 . The first 𝑟 eigenvalues 𝜆1, … , 𝜆𝑟 of the matrix 𝐴𝐴
𝑇

are the square of the singular values 𝜎
2

1
, … , 𝜎

2

𝑟
of 𝐴, and the remaining eigenvalues are

zero. The eigenvectors associated with the eigenvalues 𝜆𝑖 = 𝜆𝑖+1 = ⋯ = 𝜆𝑗 span the same

subspace as any sequence 𝑢𝑖, 𝑢𝑖+1, … , 𝑢𝑗 of left singular vectors associated with the singular

values 𝜎𝑖 = 𝜎𝑖+1 = ⋯ = 𝜎𝑗 .

Fact 21. For any matrix 𝐴 ∈ ℝ
𝑑×𝑛

, we have

‖𝐴‖
2

𝐹
= Tr(𝐴𝐴

𝑇
) =

𝑑

∑

𝑖=1

𝜆(𝐴𝐴
𝑇
) =

𝑑

∑

𝑖=1

𝜎
2
(𝐴).

Theorem 22 (Johnson-Lindenstrauss Lemma). There exists a constant 𝜅 such that for any

set 𝐴 of 𝑛 points in ℝ
𝑑
, any 𝜀 ∈ (0, 1) fixed and all integers 𝑟 ≥ 𝜅𝜀

−2
log 𝑛 there exists a linear

function 𝑓 ∶ ℝ
𝑑
→ ℝ

𝑟
such that for every pair 𝑥, 𝑦 ∈ 𝐴 we have

(1 − 𝜀)‖𝑥 − 𝑦‖
2
≤ ‖𝑓 (𝑥) − 𝑓 (𝑦)‖

2
≤ (1 + 𝜀)‖𝑥 − 𝑦‖

2
. (2.5)

Lemma 23 (Random projection lemma). Suppose 𝑇 ∈ ℝ
𝑟×𝑑

is a random matrix where each

entry 𝑡𝑖𝑗 of 𝑇 is an independent random variable that assumes values uniformly in {+1, −1}.

Let 𝑆 ∈ ℝ
𝑟×𝑑

be defined as

𝑆 =

1

√

𝑟

𝑇 .

Then for all 𝑣 ∈ ℝ
𝑑

and 𝜀 ∈ (0, 1) we have

ℙ [‖𝑆𝑣‖
2
> (1 + 𝜀)‖𝑣‖

2

] < 𝑒
−𝑟𝜀

2
/12

,

ℙ [‖𝑆𝑣‖
2
< (1 − 𝜀)‖𝑣‖

2

] < 𝑒
−𝑟𝜀

2
/12

.

Definition 24 (Johnson-Lindenstrauss Transform). Let 𝜀 ∈ (0, 1) and 𝛿 ∈ (0, 1) be fixed.

Suppose that 𝑟 < 𝑑 are positive integers and that 𝑑,𝑟 is a probability distribution over the

space of linear functions with domain ℝ
𝑑

and codomain ℝ
𝑟
. We say that 𝑑,𝑟 is a Johnson-

Lindenstrauss Transform with parameters 𝜀, 𝛿, and 𝑛 or 𝐽 𝐿𝑇 (𝜀, 𝛿, 𝑛) for short if for any

set 𝐴 ⊂ ℝ
𝑑

of 𝑛 points with probability at least 1 − 𝛿 we have that a function 𝑓 drawn

66

APPENDIX C

from 𝑑,𝑟 satisfies for every pair 𝑥, 𝑦 ∈ 𝐴

(1 − 𝜀)‖𝑥 − 𝑦‖
2
≤ ‖𝑓 (𝑥) − 𝑓 (𝑦)‖

2
≤ (1 + 𝜀)‖𝑥 − 𝑦‖

2
.

Definition 25. Fix 𝜀 ∈ (0, 1) and 𝛿 ∈ (0, 1). Suppose that 𝑟 < 𝑑 are positive integers. We say

that a random matrix 𝑆 is a Johnson-Lindenstrauss Transform with parameters 𝜀, 𝛿, and 𝑛

or 𝐽 𝐿𝑇 (𝜀, 𝛿, 𝑛) for short if for any set 𝐴 ⊂ ℝ
𝑑

of 𝑛 points with probability at least 1 − 𝛿 for

every pair 𝑥, 𝑦 ∈ 𝐴 we have

(1 − 𝜀)‖𝑥 − 𝑦‖
2
≤ ‖𝑆𝑥 − 𝑆𝑦‖

2
≤ (1 + 𝜀)‖𝑥 − 𝑦‖

2
.

Corollary 26. Let 𝜀 ∈ (0, 1) and 𝛿 ∈ (0, 1) be fixed. If 𝑓 is drawn from a 𝐽 𝐿𝑇 (𝜀, 𝛿, 𝑛 + 1)

then for any 𝐴 ⊂ ℝ
𝑑

set of 𝑛 points, with probability at least 1 − 𝛿 for all 𝑥, 𝑦 ∈ 𝐴 we have

⟨𝑥, 𝑦⟩ − 𝜀‖𝑥‖‖𝑦‖ ≤ ⟨𝑓 (𝑥), 𝑓 (𝑦)⟩ ≤ ⟨𝑥, 𝑦⟩ + 𝜀‖𝑥‖‖𝑦‖. (2.7)

Lemma 27. Let 𝜀 ∈ (0, 1) be fixed and let 𝑆 ∈ ℝ
⌈𝜀

−2
⌉×𝑑

be a normalized Johnson-Lindenstrauss

matrix. Then for every 𝑥, 𝑦 ∈ ℝ
𝑑

we have

𝔼 [⟨𝑆𝑥, 𝑆𝑦⟩] = ⟨𝑥, 𝑦⟩

and

Var [⟨𝑆𝑥, 𝑆𝑦⟩] ≤ 2𝜀
2
‖𝑥‖

2

‖𝑦‖
2

.

Lemma 28 (Sarlós, 2006). Let 𝐴 ∈ ℝ
𝑛×𝑑

and 𝐵 ∈ ℝ
𝑑×𝑚

be matrices, and let 𝜀 ∈ (0, 1) be

fixed. The following statements are true:

1. If a matrix 𝑆 is a 𝐽 𝐿𝑇 (𝜀, 𝛿, 𝑛 + 𝑚 + 1) then with probability at least 1 − 𝛿 we have

‖
‖
𝐴𝐵 − 𝐴𝑆

𝑇
𝑆𝐵

‖
‖𝐹

≤ 𝜀 ‖𝐴‖
𝐹
‖𝐵‖

𝐹
.

2. If a matrix 𝑆 ∈ ℝ
⌈𝜀

−2
⌉×𝑑

is a normalized Johnson-Lindenstrauss matrix then

𝔼 [𝐴𝑆
𝑇
𝑆𝐵] = 𝐴𝐵

and

𝔼
[

‖
‖
𝐴𝐵 − 𝐴𝑆

𝑇
𝑆𝐵

‖
‖

2

𝐹]
≤ 2𝜀

2
‖𝐴‖

2

𝐹
‖𝐵‖

2

𝐹
,

where the mean 𝔼 [𝑋] of a random matrix 𝑋 is the matrix where the entry 𝔼 [𝑋]
𝑖𝑗

is 𝔼 [𝑋𝑖𝑗].

Theorem 29 (Low dimensional representation). Let 𝐴 ∈ ℝ
𝑑×𝑛

be an instance of best-fit

linear 𝑗-subspace problem in ℝ
𝑑
, and suppose that 𝑗 < rank(𝐴) = 𝑑

′
< 𝑑. Then there exist an

instance 𝐴
′
∈ ℝ

𝑑
′
×𝑛

of best-fit linear 𝑗-subspace problem in ℝ
𝑑
′

that satisfy the following:

1. There exist an isometric embedding 𝑓 ∶ ℝ
𝑑
′

→ ℝ
𝑑

such that if 𝐶
′

is a solution for 𝐴
′

C | QUICK REFERENCE FOR THEOREMS

67

then 𝐶 ∶= 𝑓 (𝐶
′
) is a solution for 𝐴 and

dist
2

(𝐴
′
, 𝐶

′
) = dist

2

(𝐴, 𝐶).

2. For every solution 𝐶 for 𝐴 there exist a solution 𝐶
′

for 𝐴
′

such that

dist
2

(𝐴
′
, 𝐶

′
) ≤ dist

2

(𝐴, 𝐶).

Fact 30. Let 𝐴 ∈ ℝ
𝑑×𝑛

and 𝐵 ∈ ℝ
𝑑×𝑗

be matrices. Suppose that 𝐵 has orthonormal columns.

Then

‖𝐴‖
2

𝐹
≥ ‖𝐵

𝑇
𝐴‖

2

𝐹
.

Corollary 31. Under the same conditions of Theorem 29, we have that if 𝐶
′∗

is an optimal

solution for 𝐴
′
, then 𝑓 (𝐶

′∗
) is an optimal solution for 𝐴, where 𝑓 is the isometric embedding

given by (1) of Theorem 29.

Definition 32. Let 𝐴 ∈ ℝ
𝑑×𝑛

be a instance of (𝓁
2

2
,)-clustering problem and let 𝛼 ≥ 1 be a

real. Let 𝐶
∗

be an optimal solution for 𝐴. We say that a solution 𝐶 is an 𝛼-approximation

for 𝐴 if

dist
2

(𝐴, 𝐶) ≤ 𝛼 dist
2

(𝐴, 𝐶
∗
).

The real 𝛼 is called approximation factor.

Fact 33. Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix, let 𝑉 be a subspace of dimension 𝑗 and let 𝐶 ⊂ 𝑉 be a

non-empty set. Suppose that 𝐵 ∈ ℝ
𝑑×𝑗

has orthonormal columns that spans 𝑉 . Then

dist
2

(𝐴, 𝐶) = ‖𝐴 − 𝐵𝐵
𝑇
𝐴‖

2

𝐹
+ dist

2

(𝐵𝐵
𝑇
𝐴, 𝐶).

Definition 34 (𝜀-sketch for (𝓁
2

2
,)-clustering). Let 𝐴 ∈ ℝ

𝑑×𝑛
be an instance for (𝓁

2

2
,)-clus-

tering problem and let 𝜀 ∈ (0, 1) be fixed. We say that a matrix 𝐴 ∈ ℝ
𝑑×𝑛

is an 𝜀-sketch for 𝐴

if there exist a non-negative constant Δ = Δ(𝐴,, 𝜀) such that for every solution 𝐶 ∈  we

have

(1 − 𝜀) dist
2

(𝐴, 𝐶) ≤ dist
2

(𝐴, 𝐶) + Δ ≤ (1 + 𝜀) dist
2

(𝐴, 𝐶). (3.2)

Definition 35 (weak 𝜀-sketch for (𝓁
2

2
,)-clustering). Let 𝐴 ∈ ℝ

𝑑×𝑛
be an instance

for (𝓁
2

2
,)-clustering problem and let 𝜀 ∈ (0, 1) be fixed. We say that 𝐴 ∈ ℝ

𝑑×𝑛
is a weak

𝜀-sketch for 𝐴 if for every optimal solution 𝐶
∗

for 𝐴 and any optimal solution 𝐶
∗

for 𝐴 we

have

dist
2

(𝐴, 𝐶
∗
) ≤ (1 + 𝜀) dist

2

(𝐴, 𝐶
∗
). (3.3)

Definition 36 (Dimension reduction scheme). A dimension reduction scheme

for (𝓁
2

2
,)-clustering problem in ℝ

𝑑
is any scheme that takes an instance 𝐴 ∈ ℝ

𝑑×𝑛
and a

parameter 𝜀 ∈ (0, 1) as input and outputs another instance 𝐴 ∈ ℝ
𝑑×𝑛

such that rank(𝐴) < 𝑑

and 𝐴 is either an 𝜀-sketch for 𝐴 or a weak 𝜀-sketch for 𝐴.

Theorem 37 (Sarlós, 2006). Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix, let 𝑗 < min{𝑑, 𝑛} be an integer and

let 𝜀 ∈ (0, 1) be fixed. There exists an integer 𝑟 = Θ(𝜀
−1
𝑗 + 𝑗 log 𝑗) such that if 𝑆 is a 𝑟 × 𝑛

68

APPENDIX C

normalized Johnson-Lindenstrauss matrix then with probability at least 1/2 we have

‖𝐴 − 𝜋
𝐴𝑆

𝑇 (𝐴)𝑗 ‖𝐹 ≤ (1 + 𝜀)‖𝐴 − 𝐴𝑗 ‖𝐹 .

Computing 𝜋
𝐴𝑆

𝑇 (𝐴)𝑗 can be done with two readings of the matrix 𝐴 and in

time 𝑂(𝑛𝑑𝑟 + (𝑛 + 𝑑)𝑟
2
).

Lemma 38 (Sarlós, 2006). Let 𝐿 ⊂ ℝ
𝑑

be a subspace of dimension 𝑗 , and let 𝜀 ∈ (0, 1) and

𝛿 ∈ (0, 1) be fixed. If 𝑓 is drawn from some 𝐽 𝐿𝑇 (𝜀/4, 𝛿, 𝑂((𝑗/𝜀)
𝑗
)), then with probability at

least 1 − 𝛿 for all 𝑣 ∈ 𝐿 we have

(1 − 𝜀)‖𝑣‖ ≤ ‖𝑓 (𝑣)‖ ≤ (1 + 𝜀)‖𝑣‖.

We say that such an 𝑓 is a subspace 𝜀-embedding.

Definition 39 (𝛿-fine grid). Fix 𝛿 ∈ (0, 1). Let 𝑒1, … , 𝑒𝑗 be the vectors of the canonical base

of ℝ
𝑗
. The set

𝐻 ∶=

{

ℎ ∈ ℝ
𝑗
∶ ∀𝑖 = 1, … , 𝑗 , ∀𝑐𝑖 ∈ ℤ ∩ [−𝛿

−1
, 𝛿

−1
], ℎ =

𝑗

∑

𝑖=1

𝛿𝑐𝑖𝑒𝑖

}

.

is called 𝛿-fine grid of dimension 𝑗 .

Corollary 40 (Sarlós, 2006). Let 𝑈 ∈ ℝ
𝑑×𝑗

be a matrix with orthonormal columns and

let 𝜀 ∈ (0, 1) and 𝛿 ∈ (0, 1) be fixed. Suppose that 𝑆 is an 𝑟 × 𝑑 normalized Johnson-Linden-

strauss matrix for some 𝑟 = 𝑂(𝜀
−2
𝑗 log(𝑗/𝜀) log(1/𝛿)). Then with probability at least 1 − 𝛿

for all 𝑖 = 1, … , 𝑗 we have

|1 − 𝜎𝑖(𝑆𝑈)| ≤ 𝜀.

Definition 41 (linear 𝓁2 regression). Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix and let 𝑏 ∈ ℝ
𝑑

be fixed. The

linear 𝓁2 regression problem is to find at least one vector 𝑥
∗
∈ ℝ

𝑛
such that for all 𝑥 ∈ ℝ

𝑛
we

have

‖𝑏 − 𝐴𝑥
∗
‖ ≤ ‖𝑏 − 𝐴𝑥‖ .

Theorem 42 (Sarlós, 2006). Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix and let 𝑏 ∈ ℝ
𝑑

and 𝜀 ∈ (0, 1)

be fixed. Let  = min𝑥∈ℝ
𝑛 ‖𝑏 − 𝐴𝑥‖ = ‖𝑏 − 𝐴𝑥

∗
‖, where 𝑥

∗
= 𝐴

†
𝑏. Let 𝑆 ∈ ℝ

𝑠×𝑑
be a nor-

malized Johnson-Lindenstrauss matrix for some positive integer 𝑠 = 𝑂(𝜀
−1
𝑛 log 𝑛). Finally,

let ̃ = min𝑥∈ℝ
𝑛 ‖𝑆𝑏 − 𝑆𝐴𝑥‖ = ‖𝑆𝑏 − 𝑆𝐴𝑥

∗
‖, where 𝑥

∗
= (𝑆𝐴)

†
𝑆𝑏. Then with probability at

least 1/3 we have

‖𝑏 − 𝐴𝑥
∗
‖ ≤ (1 + 𝜀).

Fact 43. There exists some 𝑠 = 𝑂(𝜀
−1
𝑛 log 𝑛) such that with probability at least 2/3 we have

𝜎𝑖((𝑆𝑈)
𝑇
(𝑆𝑈)) = 𝜎

2

𝑖
(𝑆𝑈) ≥

1

√

2

.

Definition 44. Let  be a non-empty set of non-empty subsets of ℝ
𝑑
, and let 𝑚 ≤ 𝑑 be a

positive integer. We say that  is an 𝑚-dimensional family if for every 𝐶 ∈  there exists a

C | QUICK REFERENCE FOR THEOREMS

69

linear subspace 𝐿(𝐶) ⊂ ℝ
𝑑

of dimension 𝑚 that contains 𝐶.

Theorem 45 (based on Pratap and Sen, 2018). Let𝐴 ∈ ℝ
𝑑×𝑛

be an instance of the (𝓁
2

2
,)-clus-

tering problem where  is an 𝑚-dimensional family and 𝑚 < min{𝑑, 𝑛}. Let 𝜀 ∈ (0, 1) be fixed.

There exists an integer 𝑠 = ⌈8𝜀
−2
𝑚⌉ such that if a matrix 𝐴

𝑇
∈ ℝ

𝑛×𝑑
is an orthogonal projection

of 𝐴
𝑇

to some subspace of dimension 𝑠 of ℝ
𝑛

and satisfies

‖
‖
‖
𝐴 − 𝐴

‖
‖
‖

2

𝐹

≤
(
1 +

𝜀
2

8)
‖𝐴 − 𝐴𝑠‖

2

𝐹
(4.17)

then 𝐴 is an 𝜀-sketch for 𝐴 with constant Δ = ‖𝐴 − 𝐴𝑠‖
2

𝐹
.

Lemma 46 (Weak triangle inequality). Let 𝑝, 𝑞 ∈ ℝ
𝑑

be fixed and let 𝐶 ⊂ ℝ
𝑑

be a non-empty

set. For all 𝜀 ∈ (0, 1) we have

|
|
dist

2

(𝑝, 𝐶) − dist
2

(𝑞, 𝐶)
|
|
≤ 𝜀 dist

2

(𝑝, 𝐶) +

2

𝜀

‖𝑝 − 𝑞‖
2

(4.18)

Lemma 47. Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix and suppose that 𝑚 < min{𝑑, 𝑛} is a positive integer.

Fix 𝜀
′
∈ (0, 1) and 𝑠 = ⌈𝜀

′−1
𝑚⌉. Suppose that 𝐴

𝑇
∈ ℝ

𝑛×𝑑
is a matrix that is an orthogonal

projection of 𝐴
𝑇

to some subspace of dimension 𝑠 of ℝ
𝑛

and satisfies

‖
‖
‖
𝐴 − 𝐴

‖
‖
‖

2

𝐹

≤ (1 + 𝜀
′
) ‖𝐴 − 𝐴𝑠‖

2

𝐹
. (4.19)

For every matrix 𝑋 ∈ ℝ
𝑑×𝑚

with orthonormal columns and matrix 𝑌 ∈ ℝ
𝑑×(𝑑−𝑚)

with

orthonormal columns such that span(𝑌) is the orthogonal complement of span(𝑋) the

following inequalities are true:

0 ≤
‖
‖
𝑋

𝑇
𝐴
‖
‖

2

𝐹
−
‖
‖
‖
𝑋

𝑇
𝐴
‖
‖
‖

2

𝐹

≤ 2𝜀
′ ‖
‖
𝑌
𝑇
𝐴
‖
‖

2

𝐹
(4.20)

and

‖
‖
‖
𝑋𝑋

𝑇
𝐴 − 𝑋𝑋

𝑇
𝐴
‖
‖
‖

2

𝐹

≤ 2𝜀
′ ‖
‖
𝑌
𝑇
𝐴
‖
‖

2

𝐹
. (4.21)

Fact 48. Let 𝐴 and 𝐵 be 𝑑 × 𝑛 matrices. Then rank(𝐴 + 𝐵) is at most rank(𝐴) + rank(𝐵).

Theorem 49. Under the same hypothesis of Lemma 47 we have that

|
|
|
|

‖
‖
‖
𝑌
𝑇
𝐴
‖
‖
‖

2

𝐹

+ ‖𝐴 − 𝐴𝑠‖
2

𝐹
−
‖
‖
𝑌
𝑇
𝐴
‖
‖

2

𝐹

|
|
|
|

≤ 2𝜀
′ ‖
‖
𝑌
𝑇
𝐴
‖
‖

2

𝐹
.

Definition 50 (𝛿-net). Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix, and let 𝛿 > 0 and  > 0 be fixed. We say

that a set 𝐷 ⊂ ℝ
𝑑

is a 𝛿-net with radius  for 𝐴 if for every 𝑥 ∈ ℝ
𝑑

such that dist(𝑥, 𝐴) ≤ 
there exists an 𝑦 ∈ 𝐷 such that ‖𝑥 − 𝑦‖ ≤ 𝛿.

Theorem 51 (Deshpande, Rademacher, Vempala, and Wang, 2006). Let (𝐴, 𝜀, 𝐵) be an

input for Algorithm 2. Suppose that the cost of an optimal solution for linear 𝑗-subspace 𝑘-clus-

tering for the instance 𝐴 is 𝐵
∗
. If 𝐵 ≥ 𝐵

∗
, then the solution given by Algorithm 2 have cost at

70

APPENDIX C

most 𝐵
∗
+ 𝜀𝐵.

Lemma 52 (Deshpande, Rademacher, Vempala, and Wang, 2006). Let 𝐴 ∈ ℝ
𝑑×𝑛

be a

matrix and let 𝛿 > 0 be fixed. Suppose that 𝐷 is a 𝛿-net for 𝐴 with radius . For every

subspace 𝑊 ⊂ ℝ
𝑑

of dimension 𝑗 , if

 ≥

√

dist
2

(𝐴,𝑊) + 2𝛿𝑗

then there exists a subspace 𝐹 of dimension 𝑗 of ℝ
𝑑

spanned by 𝑗 points of 𝐷 such that

dist
2

(𝐴, 𝐹) ≤ dist
2

(𝐴,𝑊) + 4𝑗
2
𝑛𝛿

2
+ 4𝑗𝛿∑

𝑎∈𝐴

dist(𝑎, 𝑊). (5.1)

Fact 53. For any 𝑥 ∈ ℝ
𝑑

we have

‖𝑥 − 𝑅𝑥‖ = ‖𝜋𝑃(𝑥) − 𝑅𝜋𝑃(𝑥)‖ .

Fact 54. For any 𝑥 ∈ ℝ
𝑑

and non-negative real 𝛿 such that dist(𝑥, 𝑃
⟂
) ≤ 𝛿 we have

‖𝑥 − 𝑅𝑥‖ ≤ 2𝛿.

Corollary 55. Suppose that 𝐴 ∈ ℝ
𝑑×𝑛

is an instance of linear 𝑗-subspace 𝑘-clustering, the

cost of an optimal solution is 𝐵
∗
, and 𝜀 ∈ (0, 1) is fixed. Suppose also that 𝐵 > 0 is fixed, and

that the cost of the solution returned by Algorithm 2 with input (𝐴, 𝜀, 𝐵) is 𝐵. If

𝐵 > (1 + 𝜀)𝐵,

then 𝐵 < 𝐵
∗
. When this happens we say that 𝐵 is a certified lower bound for the pair (𝐴, 𝜀).

Fact 56. The while-loop on line 9 is executed at most log
2
(𝐵/𝐵

∗
) + 2 times.

Fact 57. The while-loop on line 18 is executed at most log
2
(3/𝜀) + 1 times.

Lemma 58. The solution 𝐶 returned by Algorithm 3 with input (𝐴, 𝜀) is a (1 + 𝜀)-approxi-

mation for 𝐴.

Fact 59. Let 𝐴 ∈ ℝ
𝑑×𝑛

be a matrix and let 𝜀 ∈ (0, 1/3) be fixed. Suppose that 𝐴 ∈ ℝ
𝑑×𝑛

is

an 𝜀-sketch for 𝐴 for the linear 𝑗-subspace 𝑘-clustering problem and 𝛼 > 1 is a fixed real. If

an algorithm  outputs an 𝛼-approximation for every input, then the output of (𝐴) will be

a (1 + 3𝜀)𝛼-approximation for 𝐴.

71

Appendix D

Quick reference for algorithms

Algorithm 1: A randomized dimension reduction scheme for (𝓁
2

2
,)-clustering

when  is 𝑚-dimensional

Input: An instance 𝐴 ∈ ℝ
𝑑×𝑛

and a parameter 𝜀 ∈ (0, 1).

Output: A matrix that with probability at least 1/2 is an 𝜀-sketch for 𝐴.

1 Let 𝑠 ∶= Θ(𝜀
−2
𝑚) be given by Theorem 45;

2 Let 𝑟 ∶= Θ(𝜀
−2
𝑠 + 𝑠 log 𝑠) be given by Theorem 37;

3 Let 𝑆 ∈ ℝ
𝑟×𝑑

be a normalized Johnson-Lindenstrauss matrix;

4 Compute 𝐴
𝑇
= 𝜋

𝐴
𝑇
𝑆
𝑇 (𝐴

𝑇
)𝑠;

5 Return 𝐴;

Algorithm 2: An approximation for linear 𝑗-subspace 𝑘-clustering

Input: A matrix 𝐴 ∈ ℝ
𝑑×𝑛

, a real 𝜀 ∈ (0, 1) and a real 𝐵 > 0.

Output: A set 𝐹1, … , 𝐹𝑘 of 𝑘 subspaces of dimension 𝑗 .

1 Set

𝛿 ∶=

𝜀

√

𝐵

8𝑗𝑘

√

𝑛

;

2 Set

 ∶=

√

𝐵 + 2𝛿𝑗;

3 Let 𝐷 be a 𝛿-net with radius  for 𝐴 that contains 𝐴;

4 For each choice of 𝑘 subspaces 𝐹1, … , 𝐹𝑘 of dimension 𝑗 , each one spanned by 𝑗

points of 𝐷, compute dist
2

(𝐴,⋃
𝑘

𝑖=1
𝐹𝑖);

5 Return the subspaces 𝐹1, … , 𝐹𝑘 with lowest cost;

72

APPENDIX D

Algorithm 3: A (1 + 𝜀)-approximation for linear 𝑗-subspace 𝑘-clustering

Input: A matrix 𝐴 ∈ ℝ
𝑑×𝑛

, a parameter 𝜀 ∈ (0, 1).

Output: A set 𝐶 ∶= {𝐹1, … , 𝐹𝑘} of 𝑘 subspaces of dimension 𝑗 .

1 Set 𝐵 as any upper bound for the cost of an optimal solution;

/* A valid initialization value for 𝐵 would be ‖𝐴‖
2

𝐹
*/

2 Set 𝐶 as the solution returned by Algorithm 2 with input (𝐴, 𝜀/3, 𝐵);

3 Set 𝛽 ∶= dist
2

(𝐴, 𝐶);

4 if 𝛽 = 0 then
5 Return 𝐶;

/* Start the loop to find a lower bound for the cost 𝐵
∗ of an op-

timal solution */

6 Set 𝐶 ∶= 𝐶;

7 Set 𝐵0 ∶= 𝐵;

8 Set 𝑖 ∶= 0;

9 while 𝛽 ≤ (1 + 𝜀/3)𝐵𝑖 do
10 𝑖 ∶= 𝑖 + 1;

11 𝐶 ∶= 𝐶; // Note that dist
2

(𝐴, 𝐶) ≤ (1 + 𝜀/3)𝐵𝑖−1

12 𝐵𝑖 ∶= 𝐵𝑖−1/2;

13 Update 𝐶 with the solution returned by Algorithm 2 with input (𝐴, 𝜀/3, 𝐵𝑖);

14 Update 𝛽 with the cost of 𝐶;

/* Note that 𝐵𝑖 is a lower bound for 𝐵
∗. Now we start the binary

search. */
15 Set 𝑙𝑜 ∶= 𝐵𝑖;

16 Set ℎ𝑖 ∶= 𝐵𝑖−1;

17 Set 𝑚𝑖𝑑 ∶= (ℎ𝑖 + 𝑙𝑜)/2;

18 while ℎ𝑖 − 𝑙𝑜 > (𝜀/3)𝐵𝑖 do
19 Update 𝐶 with the solution returned by Algorithm 2 with input (𝐴, 𝜀/3, 𝑚𝑖𝑑);

20 Update 𝛽 with dist
2

(𝐴, 𝐶);

21 if 𝛽 ≤ (1 + 𝜀/3)𝑚𝑖𝑑 then
22 ℎ𝑖 ∶= 𝑚𝑖𝑑;

23 𝐶 ∶= 𝐶 ; // Note that dist
2

(𝐴, 𝐶) ≤ (1 + 𝜀/3)ℎ𝑖

24 else
25 Update 𝑙𝑜 with 𝑚𝑖𝑑;

26 𝑚𝑖𝑑 ∶= (ℎ𝑖 + 𝑙𝑜)/2;

27 Return 𝐶;

73

References

[Achlioptas 2003] Dimitris Achlioptas. “Database-friendly random projections:

Johnson-Lindenstrauss with binary coins”. In: vol. 66. 4. Special issue on PODS

2001 (Santa Barbara, CA). 2003, pp. 671–687. doi: 10.1016/S0022-0000(03)00025-4.

url: https://doi.org/10.1016/S0022-0000(03)00025-4 (cit. on pp. 9–11).

[Aloise, Deshpande, Hansen, and Popat 2009] Daniel Aloise, Amit Deshpande,

Pierre Hansen, and Preyas Popat. “NP-hardness of Euclidean sum-of-squares

clustering”. In: Machine Learning 75.2 (2009), pp. 245–248. doi: 10.1007/s10994-
009-5103-0 (cit. on p. 16).

[Alon, Gibbons, Matias, and Szegedy 2002] Noga Alon, Phillip B. Gibbons, Yossi

Matias, and Mario Szegedy. “Tracking join and self-join sizes in limited storage”.

In: vol. 64. 3. Special issue on PODS 1999 (Philadelphia, PA). 2002, pp. 719–747.

doi: 10.1006/jcss.2001.1813. url: https://doi.org/10.1006/jcss.2001.1813 (cit. on

p. 13).

[Blum, Hopcroft, and Kannan 2020] Avrim Blum, John Hopcroft, and Ravi Kan-

nan. Foundations of Data Science. 2020. isbn: 978-1108485067. url: https://www.
cs.cornell.edu/jeh/book.pdf (cit. on pp. 7, 8).

[Cohen et al. 2015] Michael B. Cohen, Sam Elder, Cameron Musco, Christopher

Musco, and Mădălina Persu. “Dimensionality reduction for 𝑘-means cluster-

ing and low rank approximation”. In: STOC’15—Proceedings of the 2015 ACM

Symposium on Theory of Computing. ACM, New York, 2015, pp. 163–172. doi:

10.1145/2746539.2746569 (cit. on pp. 33, 55).

[Deshpande, Rademacher, Vempala, and Wang 2006] Amit Deshpande, Luis

Rademacher, Santosh Vempala, and GrantWang. “Matrix approximation and pro-

jective clustering via volume sampling”. In: Theory Comput. 2 (2006), pp. 225–247.

doi: 10.4086/toc.2006.v002a012. url: https://doi.org/10.4086/toc.2006.v002a012
(cit. on pp. v, vi, 41, 43, 69, 70).

[Feldman, Schmidt, and Sohler 2020] Dan Feldman, Melanie Schmidt, and Chris-

tian Sohler. “Turning big data into tiny data: constant-size coresets for 𝑘-means,

PCA, and projective clustering”. In: SIAM J. Comput. 49.3 (2020), pp. 601–657. issn:

0097-5397. doi: 10.1137/18M1209854. url: https://doi.org/10.1137/18M1209854
(cit. on pp. v, vi, 23, 33).

https://doi.org/10.1016/S0022-0000(03)00025-4
https://doi.org/10.1016/S0022-0000(03)00025-4
https://doi.org/10.1007/s10994-009-5103-0
https://doi.org/10.1007/s10994-009-5103-0
https://doi.org/10.1006/jcss.2001.1813
https://doi.org/10.1006/jcss.2001.1813
https://www.cs.cornell.edu/jeh/book.pdf
https://www.cs.cornell.edu/jeh/book.pdf
https://doi.org/10.1145/2746539.2746569
https://doi.org/10.4086/toc.2006.v002a012
https://doi.org/10.4086/toc.2006.v002a012
https://doi.org/10.1137/18M1209854
https://doi.org/10.1137/18M1209854

74

REFERENCES

[Har-Peled, Indyk, and Motwani 2012] Sariel Har-Peled, Piotr Indyk, and Rajeev

Motwani. “Approximate nearest neighbor: towards removing the curse of dimen-

sionality”. In: Theory Comput. 8 (2012), pp. 321–350. doi: 10.4086/toc.2012.v008a014.

url: https://doi.org/10.4086/toc.2012.v008a014 (cit. on pp. v, vi, 1).

[Horn and Johnson 2013] Roger A. Horn and Charles R. Johnson. Matrix analysis.

Second. Cambridge University Press, Cambridge, 2013, pp. xviii+643. isbn: 978-0-

521-54823-6 (cit. on pp. 8, 44).

[Inaba, Katoh, and Imai 1994] Mary Inaba, Naoki Katoh, and Hiroshi Imai. “Appli-

cations of weighted Voronoi diagrams and randomization to variance-based 𝑘-

clustering”. In: Proceedings of the tenth Annual Symposium on Computational

Geometry. 1994, pp. 332–339. doi: 10.1145/177424.178042 (cit. on p. 16).

[Johnson and Lindenstrauss 1984] William B. Johnson and Joram Lindenstrauss.

“Extensions of Lipschitz mappings into a Hilbert space”. In: Conference in modern

analysis and probability (New Haven, Conn., 1982). Vol. 26. Contemp. Math. Amer.

Math. Soc., Providence, RI, 1984, pp. 189–206. doi: 10.1090/conm/026/737400. url:

https://doi.org/10.1090/conm/026/737400 (cit. on p. 9).

[Makarychev, Makarychev, and Razenshteyn 2019] Konstantin Makarychev,

Yury Makarychev, and Ilya Razenshteyn. “Performance of Johnson-

Lindenstrauss transform for 𝑘-means and 𝑘-medians clustering”. In: STOC’19—

Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing.

ACM, New York, 2019, pp. 1027–1038. doi: 10 . 1145 / 3313276 . 3316350. url:

https://doi.org/10.1145/3313276.3316350 (cit. on p. 55).

[Matoušek 2013] Jirı Matoušek. Lecture notes on metric embeddings. Tech. rep. ETH

Zürich, 2013 (cit. on p. 1).

[Megiddo and Tamir 1981] Nimrod Megiddo and Arie Tamir. “On the complexity of

locating linear facilities in the plane”. In: Oper. Res. Lett. 1.5 (1981), pp. 194–197.

issn: 0167-6377. doi: 10.1016/0167-6377(82)90039-6. url: https://doi.org/10.1016/
0167-6377(82)90039-6 (cit. on p. 17).

[Nelson 2020] Jelani Nelson. Dimensionality Reduction in Euclidean Space. Nov. 2020.

doi: 10.1090/noti2166. url: https://www.ams.org/journals/notices/202010/rnoti-
p1498.pdf (cit. on pp. v, vi).

[Pan, Chen, Zheng, et al. 1999] Victor Y Pan, Z Chen, Ailong Zheng, et al. “The com-

plexity of the algebraic eigenproblem”. In: STOC ’99: Proceedings of the thirty-first

Annual ACM Symposium on Theory of Computing. Association for Computing

Machinery, New York, NY, United States, 1999, pp. 507–516. doi: 10.1145/301250.
301389 (cit. on p. 9).

https://doi.org/10.4086/toc.2012.v008a014
https://doi.org/10.4086/toc.2012.v008a014
https://doi.org/10.1145/177424.178042
https://doi.org/10.1090/conm/026/737400
https://doi.org/10.1090/conm/026/737400
https://doi.org/10.1145/3313276.3316350
https://doi.org/10.1145/3313276.3316350
https://doi.org/10.1016/0167-6377(82)90039-6
https://doi.org/10.1016/0167-6377(82)90039-6
https://doi.org/10.1016/0167-6377(82)90039-6
https://doi.org/10.1090/noti2166
https://www.ams.org/journals/notices/202010/rnoti-p1498.pdf
https://www.ams.org/journals/notices/202010/rnoti-p1498.pdf
https://doi.org/10.1145/301250.301389
https://doi.org/10.1145/301250.301389

REFERENCES

75

[Pratap and Sen 2018] Rameshwar Pratap and Sandeep Sen. “Faster coreset construc-

tion for projective clustering via low-rank approximation”. In: Combinatorial algo-

rithms. Vol. 10979. Lecture Notes in Comput. Sci. Springer, Cham, 2018, pp. 336–348.

doi: 10.1007/978-3-319-94667-2_28. url: https://doi.org/10.1007/978-3-319-94667-
2_28 (cit. on pp. v, vi, 23, 33, 34, 69).

[Sarlós 2006] Tamás Sarlós. “Improved approximation algorithms for large matrices

via random projections”. In: 2006 47th Annual IEEE Symposium on Foundations of

Computer Science (FOCS’06). IEEE. 2006, pp. 143–152. doi: 10.1109/FOCS.2006.37
(cit. on pp. v, vi, 13, 23, 24, 26, 28, 33, 66–68).

[Shamos 1978] Michael Ian Shamos. “Computational geometry”. PhD thesis. 1978 (cit.

on p. 4).

[Trefethen and Bau 1997] Lloyd N. Trefethen and David Bau III. Numerical linear

algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,

PA, 1997, pp. xii+361. isbn: 0-89871-361-7. doi: 10.1137/1.9780898719574. url:

https://doi.org/10.1137/1.9780898719574 (cit. on p. 9).

https://doi.org/10.1007/978-3-319-94667-2_28
https://doi.org/10.1007/978-3-319-94667-2_28
https://doi.org/10.1007/978-3-319-94667-2_28
https://doi.org/10.1109/FOCS.2006.37
https://doi.org/10.1137/1.9780898719574
https://doi.org/10.1137/1.9780898719574

76

Index

Symbols
(
𝑆

𝑘
), 16

𝛿-fine grid, 25

𝛿-net, 41

𝑚-dimensional family, 33

A
approximation factor, 21

B
best rank 𝑘 approximation, 8

big-O notation, 4

C
centers, 15

certified lower bound, 49

clustering

(𝓁
2

2
,)-clustering, 15

𝑘-means clustering, 15

best-fit linear 𝑗-subspace, 5, 16

linear 𝑗-subspace 𝑘-clustering, 16

cost, 15

D
dimension reduction, 1

scheme, 22

F
Frobenius norm, 3

I
instance, 15

J
Johnson-Lindenstrauss

JLT(𝜀, 𝛿, 𝑛), 11

Lemma, 9

matrix, 10

normalized Johnson-Lindenstrauss

matrix, 10

Transform, 11

L
linear 𝓁2 regression problem, 27

M
mean of a random matrix, 13

Moore-Penrose generalized inverse, 27

O
optimal solution, 15

orthogonal matrix, 3

orthogonal projection, 3

of a matrix, 3

orthonormal columns, 3

P
projective clustering, see linear 𝑗-sub-

space 𝑘-clustering16

projector matrix, 3

R
random projection lemma, 10

real random access machine, 4

rotation, 44

(𝑢, 𝑣)-rotation matrix, 44

plane of rotation, 44

proper rotation matrix, 44

S
singular

first left singular vector, 6

first singular value, 6

left singular vectors, 5

right singular vectors, 5

value, 5

INDEX

77

value decomposition, 5

sketch, 1

𝜀-sketch, 21

weak 𝜀-sketch, 22

solution, 15

span(𝐴), 3

subspace 𝜀-embedding, 24

	Introduction
	Preliminaries
	Definitions
	Best-fit subspace and singular value decomposition
	Best approximation in the Frobenius norm
	Finding the SVD in polynomial time

	The Johnson-Lindenstrauss Lemma
	Consequences of the Johnson and Lindenstrauss Lemma

	The (22, C)-clustering problem
	Low dimensional representation
	Sketch definition and dimension reduction

	Approximation by dimension reduction
	Random dimension reduction scheme for the best-fit linear j-subspace problem
	Finding an -sketch for the (22, C)-clustering problem

	Application to projective clustering
	A (1+)-approximation for projective clustering
	Faster approximation using -sketches

	Conclusion and further questions
	Additional proofs
	Constant size family example
	Quick reference for theorems
	Quick reference for algorithms
	References
	Index

