• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
Documento
Autor
Nombre completo
Fernando Araujo Borges
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2015
Director
Tribunal
Marcos, Eduardo do Nascimento (Presidente)
Alvares, Edson Ribeiro
Iusenko, Kostiantyn
Salazar, Hernan Alonso Giraldo
Trepode, Sonia Elizabeth
Título en portugués
Álgebra c-conglomerada e c-frisos
Palabras clave en portugués
Álgebra de conglomerado
Aplicação de Caldero-Chapoton
c-friso
Resumen en portugués
Neste trabalho introduzimos uma nova classe de álgebra de conglomerado com coeficientes do tipo Dynkin A_n, a qual denominaremos álgebra c-conglomerada. Desenvolvemos a teoria dos c-frisos, a qual foi introduzida por Matte, Desloges e Sanchez, para o estudo das propriedades combinatórias da álgebra c-conglomerada. Usando c-frisos, obtemos uma fórmula explícita para as variáveis de conglomerado de uma álgebra c-conglomerada que explica simultaneamente o fenômeno de Laurent e a positividade. Interpretamos geometricamente a álgebra c-conglomerada em termos de triangulações de polígonos, em que triangulações correspondem aos conglomerados e diagonais correspondem às variáveis de conglomerado de uma álgebra c-conglomerada. Além disso, generalizamos a aplicação de Caldero-Chapoton e utilizamos esta versão mais geral para obter as variáveis de conglomerado de uma álgebra c-conglomerada em função dos objetos indecomponíveis da categoria de conglomerado do tipo A_n.
Título en inglés
c-Cluster algebra and c-friezes
Palabras clave en inglés
c-frieze
Caldero-Chapoton map
Cluster algebra
Resumen en inglés
In this work we introduce a new class of cluster algebra with coefficients of Dynkin type A_n, which we call c-cluster algebra. In order to study the combinatorics of the c-cluster algebra, we develop the theory of c-friezes introduced by Matte, Desloges and Sanchez. Using c-friezes, we give an explicit formula for all cluster variables of a c-cluster algebra, which explains simultaneously the Laurent phenomenon and the positivity. A c-cluster algebra also has a geometric interpretation in terms of triangulations of a polygon, where clusters are in one-to-one correspondence with triangulations and the cluster variables are in one-to-one correspondence with diagonals. Finally, we give a generalization of the Caldero-Chapoton map which we use to obtain the cluster variables of a c-cluster algebra in terms of the indecomposable objects of the cluster category of type A_n.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
frisos_tese.pdf (946.64 Kbytes)
Fecha de Publicación
2019-08-21
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2022. Todos los derechos reservados.