• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.2023.tde-15082023-203143
Document
Author
Full name
Bianca Paolini Lorenzi
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2023
Supervisor
Committee
Pereira, Antonio Luiz (President)
Aragão, Gleiciane da Silva
Barbosa, Pricila da Silva
Bruschi, Simone Mazzini
Pereira, Marcone Corrêa
Title in Portuguese
Continuidade de atratores para uma família de perturbações altamente oscilatórias do quadrado
Keywords in Portuguese
Atrator global
Continuidade de atratores
Domínio Lipschitz
Equações parabólicas
Perturbação de domínio
Abstract in Portuguese
Consideramos uma família de problemas parabólicos semilineares \begin{equation*} \left\{ \begin u_(x,t) = \Delta u(x,t) - au(x,t) + f(u(x,t)), \,\,\, x \in \Omega_{\epsilon}, t > 0, \\ \frac{\partial u}{\partial N} (x,t) = g(u(x,t)), \,\,\, x \in \partial \Omega_{\epsilon}, t > 0, \end ight. \end{equation*} oindent onde $a > 0$, $\Omega$ é o quadrado unitário, $\Omega_{\epsilon} = h_{\epsilon}(\Omega)$, $h_{\epsilon}$ é uma família de difeomorfismos, os quais convergem para a identidade de $\Omega$ na norma $C^{0, \alpha}, \, 0 \leq \alpha < 1 $, mas não na norma $C^$ e, $f,g: \mathbb ightarrow \mathbb$ são funções reais. Sob determinadas hipóteses, mostramos que o problema limite é dado por \begin{equation*}\ \left\{ \begin u_(x,t) = \Delta u(x,t) - au(x,t) + f(u(x,t)), \,\,\, x \in \Omega, t > 0, \\ \frac{\partial u}{\partial N} (x,t) = g(u(x,t))\mu, \,\,\, x \in \partial \Omega, t > 0, \end ight. \end{equation*} oindent em que $\mu$ é essencialmente o limite do determinante jacobiano do difeomorfismo $h_{\epsilon} : \partial \Omega ightarrow \partial h_{\epsilon}(\Omega)$. Demonstramos que o problema está bem posto para $0 \leq \epsilon \leq \epsilon_$, $\epsilon_ > 0$, em um espaço de fase conveniente, que o semigrupo associado possui um atrator global $\mathcal_{\epsilon}$ e, que a família $\{ \mathcal_{\epsilon} \}_{0 \, \leq \, \epsilon \, \leq \, \epsilon_}$ é contínua em $\epsilon = 0$.\\
Title in English
Continuity of attractors for a family of highly oscillatory perturbations of the square
Keywords in English
Continuity of attractors
Global attractor
Lipschitz domains
Parabolic equations
Perturbation of the domain
Abstract in English
We consider the family of semilinear parabolic problems \begin{equation*} \left\{ \begin u_(x,t) = \Delta u(x,t) - au(x,t) + f(u(x,t)), \,\,\, x \in \Omega_{\epsilon}, t > 0, \\ \frac{\partial u}{\partial N} (x,t) = g(u(x,t)), \,\,\, x \in \partial \Omega_{\epsilon}, t > 0, \end ight. \end{equation*} oindent where $a > 0$, $\Omega$ is the unit square, $\Omega_{\epsilon} = h_{\epsilon}(\Omega)$, $h_{\epsilon}$ is a family of diffeomorphisms which converge to the identity of $\Omega$ in $C^{0, \alpha}$ - norm, $ 0 \leq \alpha < 1$, but not in the $C^$ - norm and, $f,g: \mathbb ightarrow \mathbb$ are real functions. Under appropriate hypothesis, we show that the limiting problem is given by \begin{equation*}\ \left\{ \begin u_(x,t) = \Delta u(x,t) - au(x,t) + f(u(x,t)), \,\,\, x \in \Omega, t > 0, \\ \frac{\partial u}{\partial N} (x,t) = g(u(x,t))\mu, \,\,\, x \in \partial \Omega, t > 0, \end ight. \end{equation*} oindent where $\mu$ is essentially the limit of the jacobian determinant of the diffeomorphism $h_{\epsilon} : \partial \Omega ightarrow \partial h_{\epsilon}(\Omega)$. We prove that the problem is well posed for $0 \leq \epsilon \leq \epsilon_$, $\epsilon_ > 0$, in a suitable phase space, the associated semigroup has a global attractor $\mathcal_{\epsilon}$ and the family $\{ \mathcal_{\epsilon} \}_{0 \,\leq \, \epsilon \, \leq \, \epsilon_}$ is continuous at $\epsilon = 0$.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2023-08-22
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.