• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
https://doi.org/10.11606/T.45.2023.tde-15082023-203143
Document
Auteur
Nom complet
Bianca Paolini Lorenzi
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2023
Directeur
Jury
Pereira, Antonio Luiz (Président)
Aragão, Gleiciane da Silva
Barbosa, Pricila da Silva
Bruschi, Simone Mazzini
Pereira, Marcone Corrêa
Titre en portugais
Continuidade de atratores para uma família de perturbações altamente oscilatórias do quadrado
Mots-clés en portugais
Atrator global
Continuidade de atratores
Domínio Lipschitz
Equações parabólicas
Perturbação de domínio
Resumé en portugais
Consideramos uma família de problemas parabólicos semilineares \begin{equation*} \left\{ \begin u_(x,t) = \Delta u(x,t) - au(x,t) + f(u(x,t)), \,\,\, x \in \Omega_{\epsilon}, t > 0, \\ \frac{\partial u}{\partial N} (x,t) = g(u(x,t)), \,\,\, x \in \partial \Omega_{\epsilon}, t > 0, \end ight. \end{equation*} oindent onde $a > 0$, $\Omega$ é o quadrado unitário, $\Omega_{\epsilon} = h_{\epsilon}(\Omega)$, $h_{\epsilon}$ é uma família de difeomorfismos, os quais convergem para a identidade de $\Omega$ na norma $C^{0, \alpha}, \, 0 \leq \alpha < 1 $, mas não na norma $C^$ e, $f,g: \mathbb ightarrow \mathbb$ são funções reais. Sob determinadas hipóteses, mostramos que o problema limite é dado por \begin{equation*}\ \left\{ \begin u_(x,t) = \Delta u(x,t) - au(x,t) + f(u(x,t)), \,\,\, x \in \Omega, t > 0, \\ \frac{\partial u}{\partial N} (x,t) = g(u(x,t))\mu, \,\,\, x \in \partial \Omega, t > 0, \end ight. \end{equation*} oindent em que $\mu$ é essencialmente o limite do determinante jacobiano do difeomorfismo $h_{\epsilon} : \partial \Omega ightarrow \partial h_{\epsilon}(\Omega)$. Demonstramos que o problema está bem posto para $0 \leq \epsilon \leq \epsilon_$, $\epsilon_ > 0$, em um espaço de fase conveniente, que o semigrupo associado possui um atrator global $\mathcal_{\epsilon}$ e, que a família $\{ \mathcal_{\epsilon} \}_{0 \, \leq \, \epsilon \, \leq \, \epsilon_}$ é contínua em $\epsilon = 0$.\\
Titre en anglais
Continuity of attractors for a family of highly oscillatory perturbations of the square
Mots-clés en anglais
Continuity of attractors
Global attractor
Lipschitz domains
Parabolic equations
Perturbation of the domain
Resumé en anglais
We consider the family of semilinear parabolic problems \begin{equation*} \left\{ \begin u_(x,t) = \Delta u(x,t) - au(x,t) + f(u(x,t)), \,\,\, x \in \Omega_{\epsilon}, t > 0, \\ \frac{\partial u}{\partial N} (x,t) = g(u(x,t)), \,\,\, x \in \partial \Omega_{\epsilon}, t > 0, \end ight. \end{equation*} oindent where $a > 0$, $\Omega$ is the unit square, $\Omega_{\epsilon} = h_{\epsilon}(\Omega)$, $h_{\epsilon}$ is a family of diffeomorphisms which converge to the identity of $\Omega$ in $C^{0, \alpha}$ - norm, $ 0 \leq \alpha < 1$, but not in the $C^$ - norm and, $f,g: \mathbb ightarrow \mathbb$ are real functions. Under appropriate hypothesis, we show that the limiting problem is given by \begin{equation*}\ \left\{ \begin u_(x,t) = \Delta u(x,t) - au(x,t) + f(u(x,t)), \,\,\, x \in \Omega, t > 0, \\ \frac{\partial u}{\partial N} (x,t) = g(u(x,t))\mu, \,\,\, x \in \partial \Omega, t > 0, \end ight. \end{equation*} oindent where $\mu$ is essentially the limit of the jacobian determinant of the diffeomorphism $h_{\epsilon} : \partial \Omega ightarrow \partial h_{\epsilon}(\Omega)$. We prove that the problem is well posed for $0 \leq \epsilon \leq \epsilon_$, $\epsilon_ > 0$, in a suitable phase space, the associated semigroup has a global attractor $\mathcal_{\epsilon}$ and the family $\{ \mathcal_{\epsilon} \}_{0 \,\leq \, \epsilon \, \leq \, \epsilon_}$ is continuous at $\epsilon = 0$.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2023-08-22
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2024. Tous droits réservés.