• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
Document
Auteur
Nom complet
Maria Clara Cardoso
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2019
Directeur
Jury
Futorny, Vyacheslav (Président)
Calixto, Lucas Henrique
Kochloukov, Plamen Emilov
Titre en portugais
Subálgebras de Mischenko-Fomenko de álgebras envolventes de álgebras de Lie simples
Mots-clés en portugais
Problema de Vinberg
Subálgebra de Mishchenko-Fomenko
Variedade de Gelfand-Tsetlin
Resumé en portugais
Nesse trabalho introduzimos as subálgebras de Mishchenko-Fomenko. Apresentamos o problema de Vinberg e a solução de Feigin, Frenkel e Toledano-Laredo em Feigin, Frenkel e Toledano-Laredo (2010) Também é mostrada a solução para as álgebras de Lie de tipo A apresentada em Futorny e Molev (2015). É estudado também o artigo Molev (2013) onde são apresentados geradores do centro de Feigin-Frenkel para as álgebras de Lie de tipo B, C e D. Também são introduzidas as subálgebras de Gelfand-Tsetlin, subálgebras das álgebras envolventes universais das álgebras de Lie de tipo A. Apresentamos uma definição de súbálgebra de Gelfand-Tsetlin para as álgebras de Lie de tipo C, introduzida em Molev e Yakimova (2017). São exibidas as variedades de Gelfand-Tsetlin de $\mathfrak_$ e $\mathfrak_$, sendo provado que a variedade de Gelfand-Tsetlin de $\mathfrak_$ é equidimensional de dimensão 4. Também é demonstrado um novo resultado sobre a equidimensionalidade de $\mathfrak_$.
Titre en anglais
Mishchenko-Fomenko subalgebras of universal enveloping algebras of simple Lie algebras
Mots-clés en anglais
Gelfand-Tsetlin variety
Mishchenko-Fomenko subalgebras
Vinberg's problem
Resumé en anglais
In this dissertation, we introduce the Mishchenko-Fomenko subalgebras. We show Vinberg's problem and the solution given by Feigin, Frenkel and Toledano-Laredo in Feigin, Frenkel and Toledano-Laredo (2010). We also show a solution for Lie algebras of type A found in Futorny and Molev (2015). We study the article Molev (2013) where generators for the Feigin-Frenkel center are shown for Lie algebras of type B, C and D. We introduce the Gelfand-Tsetlin subalgebras, which are subalgebras of the universal enveloping algebras of Lie algebras of type A. We show a definition of Gelfand-Tsetlin for Lie algebras of type C, introduced in Molev and Yakimova (2017). We exhibit the Gelfand-Tsetlin varieties related to $\mathfrak_$ and $\mathfrak_$. We prove that the Gelfand-Tsetlin variety for $\mathfrak_$ is equidimensional of dimension 4 and we prove a new result about the equidimensionality of $\mathfrak_$.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2019-09-12
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.