• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.43.2022.tde-23052022-172235
Document
Author
Full name
Lucas Magno Dantas Ramos
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2022
Supervisor
Committee
Bertuzzo, Enrico (President)
Dias, Alex Gomes
Matheus, Ricardo D'Elia
Title in Portuguese
Espalhamento Coerente de Neutrino-Núcleo e Modelos Z' Leve: Formalismo, Fenomenologia e Projeção de Sensitividade
Keywords in Portuguese
Além do Modelo-Padrão
CEvNS
Física de Neutrinos
Modelos Simplificados,Teoria Quântica de Campos
Abstract in Portuguese
A confirmação de massas não-nulas para neutrinos define fenômenos relacionados à Física de Neutrinos como casos-teste de primordial importância para sondar cenários além do Modelo-Padrão. Em particular, experimentos futuros dedicados à detecção do Espalhamento Elástico Coerente de Neutrino-Núcleo podem ser ferramentas poderosas para impor limites em nova física leve. Neste trabalho, introduzimos uma abordagem completa para quantificar predições e obter a sensitividade de mediadores Z leve para dois experimentos propostos: um detector direcional de Câmara de Projeção Temporal de baixa pressão, vBDX-DRIFT, que utilizará neutrinos da Long Baseline Neutrino Facility; e vários possíveis experimentos a serem instalados na European Spallation Source. Comparamos os resultados obtidos com limites já existentes de alvo-fixo, aceleradores, neutrinos solares e experimentos de reator. Além disso, mostramos que esses experimentos têm o potencial de testar regiões inexploradas que, em certos casos, poderiam explicar o momento magnético anômalo do múon ou características peculiares do espectro cósmico de neutrinos observado pelo detector IceCube.
Title in English
Coherent Elastic Neutrino-Nucleus Scattering & Light Z Models: Formalism, Phenomenology and Projected Sensitivity
Keywords in English
Beyond Standard Model
CEvNS
Neutrino Physics
Quantum Field Theory
Simplified Models
Abstract in English
The confirmation of non-zero Neutrino masses defines Neutrino Physics phenomena as test cases of central importance to probe scenarios beyond the Standard Model. In particular, future experiments dedicated to the detection of Coherent Elastic Neutrino-Nucleus Scattering may be powerful tools for constraining light new physics. In this work, we introduce a complete approach in order to quantify predictions and derive sensitivity on light Z mediators for two proposed experiments: a directional low-pressure Time Projection Chamber detector, BDX-DRIFT, that will utilize neutrinos produced at the Long Baseline Neutrino Facility; and several possible experiments to be installed at the European Spallation Source. We compare the results obtained with existing limits from fixed-target, accelerator, solar neutrino and reactor experiments. Furthermore, we show that these experiments have the potential to test unexplored regions that, in some case, could explain the anomalous magnetic moment of the muon or peculiar spectral features in the cosmic neutrino spectrum observed by IceCube.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Thesis_LMDR.pdf (6.06 Mbytes)
Publishing Date
2022-07-08
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.