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Abstract

The confirmation of non-zero Neutrino masses defines Neutrino Physics phenom-
ena as test cases of central importance to probe scenarios beyond the Standard Model. In
particular, future experiments dedicated to the detection of Coherent Elastic Neutrino-
Nucleus Scattering may be powerful tools for constraining light new physics. In this work,
we introduce a complete approach in order to quantify predictions and derive sensitiv-
ity on light Z’ mediators for two proposed experiments: a directional low-pressure Time
Projection Chamber detector, ‹BDX-DRIFT, that will utilize neutrinos produced at the
Long Baseline Neutrino Facility; and several possible experiments to be installed at the
European Spallation Source. We compare the results obtained with existing limits from
fixed-target, accelerator, solar neutrino and reactor experiments. Furthermore, we show
that these experiments have the potential to test unexplored regions that, in some case,
could explain the anomalous magnetic moment of the muon or peculiar spectral features
in the cosmic neutrino spectrum observed by IceCube.

Keywords: Neutrino Physics; CE‹NS; Simplified Models; Quantum Field Theory;
Beyond Standard Model



Resumo

A confirmação de massas não-nulas para neutrinos define fenômenos relacionados
à Física de Neutrinos como casos-teste de primordial importância para sondar cenários
além do Modelo-Padrão. Em particular, experimentos futuros dedicados à detecção do
Espalhamento Elástico Coerente de Neutrino-Núcleo podem ser ferramentas poderosas
para impor limites em nova física leve. Neste trabalho, introduzimos uma abordagem
completa para quantificar predições e obter a sensitividade de mediadores Z’ leve para
dois experimentos propostos: um detector direcional de Câmara de Projeção Temporal
de baixa pressão, ‹BDX-DRIFT, que utilizará neutrinos da Long Baseline Neutrino Fa-
cility; e vários possíveis experimentos a serem instalados na European Spallation Source.
Comparamos os resultados obtidos com limites já existentes de alvo-fixo, aceleradores,
neutrinos solares e experimentos de reator. Além disso, mostramos que esses experimen-
tos têm o potencial de testar regiões inexploradas que, em certos casos, poderiam explicar
o momento magnético anômalo do múon ou características peculiares do espectro cósmico
de neutrinos observado pelo detector IceCube.

Palavras-chave: Física de Neutrinos; CE‹NS; Modelos Simplificados; Teoria Quân-
tica de Campos; Além do Modelo-Padrão
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1 Introduction

1.1 The Standard Model and the Future
The past decade has been special for the Particle Physics community, with the

culmination of a near century-long program to formalize fundamental interactions of na-
ture under a single framework of Quantum Field Theory. While it is di�cult to define a
single starting point, one could trace a crucial benchmark to Paul Dirac’s work in the late
1920’s on a consistent quantum theory of emission, absorption and radiation [1]. In this
seminal paper, Dirac formalized a consistent description of interactions between charges
and the electromagnetic field in first order of perturbation theory, while describing both
as quantum objects, explaining the phenomenon of spontaneous emission. Furthermore,
it also is the first use of the term “Quantum Electrodynamics”, coining the name for
the theory later described by Richard Feynman as “the jewel of Physics”[2] for the accu-
racy of its predictions, and e�ectively inaugurating the field which would be the basis for
all subsequent development of the currently known Standard Model of Particle Physics.
Several decades later, the discovery of the Higgs Boson by the Large Hadron Collider
collaborations in 2012[3, 4] marked the final piece in this gargantuan e�ort.

The Standard Model is a gauge theory based on a SU(3)C ◊ SU(2)L ◊ U(1)Y

symmetry group, bringing into a unified framework both strong and electroweak interac-
tions, describing dynamics under these forces for all known elementary particles. Below
the electroweak scale (�EW ¥ O(100GeV )), the theory undergoes Spontaneous Symmetry
Breaking as the Higgs field acquires a vacuum expectation value, such that the ground
state of the theory is now symmetric under SU(3)C ◊ U(1)em, reproducing the familiar
interactions of electromagnetism via the unbroken U(1) group. The mechanism also gen-
erates mass terms for all massive fermions and for the weak bosons (W, Z), which were
forbidden in the unbroken phase by SU(2)L gauge invariance.

This is all summarized (in a somewhat compact notation) in the Standard Model
Lagrangian:

L =
ÿ

Â

Â̄ii“
µDµÂi ≠

ÿ

F

1
4F a

µ‹F a,µ‹ (Gauge sector)

+ |Dµ(H)|2 ≠ µ2|H†H| ≠ ⁄2|H†H|2 (Higgs sector)

≠ Y u
i,jQ̄

iH̃uj
R ≠ Y d

i,jQ̄
iHdj

R ≠ Y l
i,jL̄

iHej
R + h.c. (Yukawa sector)

(1.1)

where Â runs over all chiral fermion components, F runs through the three types of gauge
vector fields (G, W, B) and i, j are flavor indices summed over the three generations.
The covariant derivatives Dµ contain appropriate terms for each fermion and the Higgs
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Figure 1 – Particle content of the Standard Model (Wikimedia Commons: MissMJ/CC-
BY-SA-3.0 )

according to their respective gauge charges. The entire particle content and its respective
electric charges and interactions of the fermions with the gauge fields are summarized in
Figure 1.

Throughout its history, the Standard Model proved to be an almost unparalleled
success both in the accuracy of its predictions and its own robustness. However, this
did not mark the end of the journey. By design, the Standard Model was never meant
to be a final “theory of everything”, since it does not include gravity in its description;
it was always meant to have a range of validity restricted at least by the Planck scale,
where gravity interactions become significant and one cannot neglect their e�ects. Even
setting aside gravity, there are still many open problems in the field (such as Baryon
Asymmetry [5], Strong CP problem [6], Anomalous magnetic dipoles [7]), emphasizing
that there is still more to explore. And yet, for the most part, so far the community has
consistently failed to gauge exactly what lies beyond it.

Precision tests and intricacies of Flavor Physics point to some promising roads
in which the Standard Model may eventually fail [8, 9], but the evidence so far is not
only scarce, but also usually dependent on assumptions or details that may still not tell
the full story. The recently observed 4.2‡ deviation of the predicted value of anomalous
magnetic moment of the muon [7] is such an example. One of the strongest deviations and
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most promising results in the last 10 years, it is still put into question due to di�erent
results for some of the crucial hadronic contributions for the Standard Model prediction
put forward by lattice groups [10], which could significantly reduce its significance.

Many extensions for the Standard Model have been proposed in order to solve
some of its most pressing concerns, like the Hierarchy Problem [11], besides other afore-
mentioned unsolved puzzles. However, experimental results in general fail to favor any of
them consistently over the Standard Model predictions. Nevertheless, so far we’ve been
at best scratching the surface of all the possible scenarios, and a growing number of op-
tions and parameter choices are discarded on a daily basis. A prominent example would be
Supersymmetry-based extensions [11]. One of the most popular solutions to the Hierarchy
problem due to providing a natural way to keep radiative corrections to the Higgs mass
under control, new “superpartner” particles predicted by them were expected to show up
in the TeV scale, probed in the Large Hadron Collider runs. However, no definitive evi-
dence of their discovery has been observed so far [12, 13], with further searches gradually
excluding more of the diminishing available phase space.

This is all to say that it is crucial to look at concrete evidence in which the Standard
Model is not adequate, in order to probe which is the way ahead to tread. While there are
many micro-anomalies within 3‡ significance range [8], whose relative importance varies
considerably among di�erent research groups, at present there are only two prevalent
topics which are consensus for an absolute majority of the community: neutrino masses
and the existence of particle-based Dark Matter. Both of these are not included in the
known Standard Model framework, with the former already confirmed by experiments
and the latter strongly implied.

Neutrino Masses

In the Standard Model, neglecting the contribution of quark condensation phe-
nomena, all fermion masses originate from Yukawa terms once the Higgs hits its vacuum
expectation value:

LYukawa ∏ ≠Y f
ij f̄ i

LHf j
R + h.c.

Hæ<H>≠≠≠≠≠æ ≠ vÔ
2

Y f
ij f̄ i

Lf j
R + h.c., (1.2)

where Y are the Yukawa couplings, f is a particular fermion, i and j are flavor
indices and L,R denote the chirality. This originates Dirac mass terms for all fermions
in the Standard Model with one exception: the neutrinos, which do not have a right-
handed component. Thus, within the framework, they should be massless. That, however,
is not the case in nature, as shown by the 2015 Nobel Prize Winner works on neutrino
oscillations [14, 15].
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Figure 2 – Illustration of the neutrino oscillation phenomenon, for a 2-flavor case. ◊
parametrizes the misallignment between eigenstates, L is the baseline distance
and Pel is the probability to observe a neutrino initially produced as ‹e as ‹l.
(Source: [17].)

The phenomenon is characterized by a non-conservation of lepton number through
the propagation of a neutrino; in simple terms, this means that a neutrino, produced ini-
tially in a particular leptonic flavor state (electron, muon or tau), is observed in a di�erent
one after it has propagated. At its core, this means that there is a misalignment between
the interaction eigenstates (which are the flavor ones) and the propagation eigenstates
(which are the mass eigenstates), which can only exist if at least two out of the three
neutrino species are massive.

In this case, each flavor is produced as a coherent mixture of di�erent mass eigen-
states, with each component propagating with a distinct evolution. As a result, the initial
mixture changes, a�ecting the probability of detecting the neutrino in a given (flavor)
state. This is illustrated for a simplified scenario with only two active neutrino flavors
propagating through vacuum in Figure 2. A formal characterization of the theory and
the many inherent subtleties in its treatment is beyond the scope of this work, but an
excellent review can be found in [16].

Having been confirmed repeatedly in a multitude of scenarios ranging from solar
observations to controlled baseline experiments, it is no exaggeration to say that the
existence of neutrino masses is currently the most important topic in Particle Physics with
respect to what may lie beyond the current Standard Model. While many mechanisms
have been proposed to explain the origin of neutrino masses (Seesaw Mechanisms being the
most popular approach [17]), no experiment so far has been able to confirm a particular
model. As such, any new information on deviations from the Standard Model concerning
the neutrino sector are incredibly valuable to guide the way for future developments in
the field.
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Dark Matter

In the same vein, another crucial component of nature which has not been contem-
plated within the Standard Model is Dark Matter. Initially proposed by the work of Fritz
Zwicky in 1937 [18] concerning the Virial relation in galaxy clusters, and later expanded
by Vera Rubin’s and collaborators’ work on galaxy rotation curves [19] in 1980, it was
characterized as a massive component of matter which does not emit in the electromag-
netic spectrum. Further studies with cluster collision events such as the Bullet Cluster
[20], observing the mismatch between the visible matter distribution and the gravita-
tional lensing one, showed it to also be nearly collisionless (both with itself and with
ordinary/“barionic” matter).

While many proposals to explain the phenomenon came up in the 80’s and later
to explain the findings - such as primordial black holes (PBHs)[21], massive compact
dense objects (MACHOs)[22], modifications to newtonian mechanics (MOND)[23] and
modified gravity theories (Scalar-Tensor, f(R) and TeVeS, to name a few) [24] - detailed
observations of the power spectrum of the CMB revealed themselves incredibly consistent
with the existence of a particle-like, massive and collisionless component in the early
universe [25]. Furthermore, it also made possible to estimate the contribution of such
a component to the overall matter-energy content of the universe, latest observations
yielding surprising 27% of Dark Matter against just 5% of barionic matter [25]. Figure 3,
taken from Plate 4 of [26], illustrates the influence of varying the matter content on the
CMB temperature Power Spectrum, which leads to the fit with observed Planck data in
Figure 4.

The remainder is dubbed "Dark Energy", and while also outside of the Standard
Model framework, we shall not discuss it here due to the lack of a clear direction of the
community in how to treat it.

Currently, besides the aforementioned characteristics, implications for the forma-
tion of halos and galaxies in the Standard Cosmological Model (Lambda-CDM) also re-
quire that dark matter is cold and stable (a brief overview and alternative scenarios can
be found in [27]). Should its production be due to a thermal mechanism, the former means
it should be non-relativistic at the time it decouples from the primordial bath, and the
later that it does not decay at timescales around the current age of the universe. The first
condition in particular discards Standard Model neutrinos, the only neutral, massive and
weakly-interacting fermion, as viable candidates.

Those conditions lead to an interesting realization, if we keep the assumption of
Dark Matter production in the early universe following a thermal scenario. At first, it
would be in equilibrium with the Standard Model particles in the primordial bath at
temperatures above its mass scale, with its number density fluctuating due to a balance
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Figure 3 – E�ect of varying the baryonic density (c) and total matter density with fixed
baryonic component (d) on the temperature power spectrum. The latter is
equivalent to varying the dark matter density. Fiducial basis model presented
in the original paper (Source: [26].)

Figure 4 – Planck 2018 Temperature Power Spectrum fit. (Source: [25])
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between annihilation to Standard Model states and production in the reverse process.
However, as the universe expands and cools down, there would be a point where the
expansion rate dominates the rate of interactions, making it so that the collision rate
goes to zero and the Dark Matter candidate decouples from the bath. Given its stability
and collisionless nature, the number abundance of a single dark matter species would be
“frozen-out” as it decouples, and remain the same henceforth. Since it is possible to track
this quantity using the CMB power spectrum, one can define a “Relic Abundance” that
a theory must correctly predict, if it admits a thermal production mechanism. Following
this “Freeze-out” scenario, the abundance is set by the thermally-averaged annihilation
cross section.

It turns out that one can get the correct relic abundance, within few orders of
magnitude, with a candidate with mass and coupling of the order of the electroweak
scale (≥ 100 GeV). These proposed candidates were named “WIMPs” (Weakly Massive
Interacting Particles), and popularly this coincidence was dubbed the “WIMP Miracle”.
Due to the inherent familiarity of working with the electroweak sector in the Standard
Model, much of the research in the area realized in the last decade has focused on WIMPs,
initially trying to consistently introduce a Electroweak-like extra sector with small inter-
actions with its Standard Model counterpart.

A more in-depth look is provided in [28], and while there are both alternative
thermal (eg. SIMPs [29]) and non-thermal (Axion, ALPs, FIMPs, etc [30]) scenarios,
WIMP + Freeze-Out has been the most well-described and explored approach in the
literature.

Many detection techniques were introduced to try and detect such candidates,
which are roughly grouped within direct detection (detection of a Dark Matter particle),
indirect detection (observation of Standard Model astroparticle signals from a Dark Mat-
ter process) and collider searches (production of Dark Matter). While developments have
been made in all three groups, direct detection has been a particularly active field both
theoretically and experimentally, and e�orts have already discarded a large part of the
available phase space for WIMP scenarios, as illustrated by Figure 5. While sensitivity
thresholds keep getting pushed, the yellow region in the plot defines a region where ex-
periments could be able to detect solar neutrinos, configuring an irreducible background
for most dark matter searches.

Our Goals

In summary, we are currently at a crossroads in the field of Particle Physics, cele-
brating a resounding success from continued e�orts formalizing and verifying predictions
but with no clear picture of what goes beyond. In this situation, neutrino physics and dark
matter become invaluable guiding beacons in order to light what may lie ahead. Both of
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Figure 5 – Some current limits on Spin-Independent Dark Matter Direct Detection
Searches, scaled to a local Dark Matter density of 0.3 GeV/c3. Plot built using
the SuperCDMS Dark Matter Limit Plotter Tool. Data taken from [31–38].

these, however, are impaired by the massive challenge presented in designing experiments
able to detect signals despite their reduced coupling to Standard Model states. In order
to probe this type of “Beyond the Standard Model” Physics, we shall introduce in the
next section the notion of Coherent Scattering, justifying how it might prove itself useful
for such a goal.

1.2 Coherent Scattering
In Physics, the notion of Coherence is rooted in the capacity of two waves to

interfere, due to a constant phase di�erence between them. Fully coherent waves can
produce a standing wave state. While primarily applied to the field of Optics and as a
general wave dynamics concept, it is also deeply significant for Quantum Mechanics and
beyond, due to the wave-like nature of quantum states.

A pedagogical example

Likewise, one can interpret the notion of scattering within this context in terms
of coherence - whether there is an interference among the partial amplitudes of a given
process. This is particularly significant when describing a scenario of a elementary probe
colliding into a composite target. A simplified view, described by Freedman et al. in [39],
is very useful to present some intuition on the process:

Suppose a target made up of A components/constituents, respectively at positions

https://supercdms.slac.stanford.edu/dark-matter-limit-plotter
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{x̨j}, j = 1, ..., A, and an incident particle with momentum k̨, which will scatter with
outgoing momentum k̨Õ. From the superposition principle, the amplitude of the process
M(k̨, k̨Õ) can be written as a sum over the contributions due to each component:

M(k̨, k̨Õ) =
Aÿ

j=1
Mj(k̨, k̨Õ)ei(k̨Õ≠k̨)·x̨j (1.3)

where each partial amplitude is weighted by a factor which takes into account the relative
phase di�erence of the wave scattering at each x̨j. We are assuming there are no double-
scatters in this scenario, which will be a reasonable assumption in the cases we’ll focus
on later.

The di�erential cross section of the process is given by this scattering amplitude,
as

d‡

d� =
---M(k̨, k̨Õ)

---
2

. (1.4)

A key realization is that if the relative phase di�erence is either zero or very small,
or constant and periodic for all of the partial amplitudes, they can be added coherently
(in this case interfering constructively), such that, defining M̄ = 1

A

qA
i=1 Mj:

d‡

d� = A2
---M̄(k̨, k̨Õ)

---
2

. (1.5)

In the case where the target is made of only one type of constituent, this further
reduces to:

d‡

d� = A2
---Mj(k̨, k̨Õ)

---
2

= A2
A

d‡

d�

B

Point-like
(1.6)

which e�ectively means we are boosting the cross section with respect to the one for a
single component by the number of components squared. If there are multiple types of con-
stituents, this scaling isn’t exact, but barring cases with a very fine cancellation between
the amplitudes Mj of each constituent, one would still expect a significant enhancement.

There are two ways to satisfy the conditions for this type of e�ect, which we’ll
name as a “coherence enhancement”:

• either the target has some organized periodic substructure imposed on the position
vectors, such that exist integers N(j, l) that satisfy

i(k̨Õ ≠ k̨) · x̨j = i
Ë
(k̨Õ ≠ k̨) · x̨l + 2fiN(j, l)

È
, ’(j, l) = {1, ..., A}, (1.7)
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since this implies

M(k̨, k̨Õ) =
Aÿ

j=1
Mj(k̨, k̨Õ)ei(k̨Õ≠k̨)·x̨j

=
Aÿ

j=1
Mj(k̨, k̨Õ)ei[(k̨Õ≠k̨)·x̨l+2fiN(j,l)]

=
Aÿ

j=1
Mj(k̨, k̨Õ)ei(k̨Õ≠k̨)·x̨lei2fiN(j,l)

= ei(k̨Õ≠k̨)·x̨l

Aÿ

j=1
Mj(k̨, k̨Õ)⇠⇠⇠⇠⇠:1

ei2fiN(j,l)

=∆ d‡

d� = A2
----e

i(k̨Õ≠k̨)·x̨lM̄
----
2

= A2
---M̄

---
2

�������*1----e
i(k̨Õ≠k̨)·x̨l

----
2

(1.8)

which could happen, for example, in the case of scattering on a crystal lattice using
a source with momentum fine-tuned to reproduce equation (1.7);

• or, more generally, if the relative phase is small enough to be e�ectively zero for all
terms, as it implies

M(k̨, k̨Õ) =
Aÿ

j=1
Mj(k̨, k̨Õ)ei(k̨Õ≠k̨)·x̨j

= ei(k̨Õ≠k̨)·x̨l

Q

aMl(k̨, k̨Õ) +
Aÿ

j=1,j ”=l

Mj(k̨, k̨Õ)ei(k̨Õ≠k̨)·(x̨j≠x̨l)

R

b

if |(k̨Õ≠k̨)·(x̨j≠x̨l)|¥0
≠≠≠≠≠≠≠≠≠≠≠≠æ ¥ ei(k̨Õ≠k̨)·x̨1

Q

aM1(k̨, k̨Õ) +
Aÿ

j=1,j ”=l

Mj(k̨, k̨Õ)⇠⇠⇠⇠⇠⇠⇠⇠:1
ei(k̨Õ≠k̨)·(x̨j≠x̨l)

R

b

= ei(k̨Õ≠k̨)·x̨1

Q

a
Aÿ

j=1
Mj(k̨, k̨Õ)

R

b

=∆ d‡

d� = A2
----e

i(k̨Õ≠k̨)·x̨lM̄
----
2

= A2
---M̄

---
2

�������*1----e
i(k̨Õ≠k̨)·x̨l

----
2

(1.9)

like in the previous case.

Let us define q̨ = k̨Õ ≠ k̨, the momentum exchanged in the process, and R =
maxj,l |x̨j ≠ x̨l|, the size of the target. Clearly,

|q̨ · (x̨j ≠ x̨l)| Æ |q̨||x̨j ≠ x̨l| Æ |q̨|R © qR (1.10)

and thus, the previous condition is equivalent to

qR π 1 (1.11)

in appropriate units. We shall define this expression as the Coherency Condition for
scattering. Since the value of R is fixed for a given target, in practice this means that
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we can expect for coherent scattering to take place for low momentum regimes, with the
scale defined by the inverse of the target size, q . 1

R .

This simple case can be pushed a bit further still, with a small generalization; for
simplicity, let’s consider a target made of only one type of component, so Mj © M0 for
all j. We can rewrite (1.3) for a single constituent type in a more general way introducing
the “component density” fl(x̨) = qA

j=1 ”(x̨ ≠ x̨j), so it becomes

M(k̨, k̨Õ) =
Aÿ

j=1
Mj(k̨, k̨Õ)ei(k̨Õ≠k̨)·x̨j

= M0(k̨, k̨Õ)
Aÿ

j=1
eiq̨·x̨j

= M0(k̨, k̨Õ)
⁄

d3x eiq̨·x̨fl(x̨) © M0(k̨, k̨Õ)F (q̨)

(1.12)

which tells that we’re dealing with the Fourier transform of some component density in the
target, which is essentially the concept of a Form Factor, which we denote as a function
of the exchanged momentum. Using this, we can write

d‡

d� = d‡

d�

-----
Point-like

|F (q)|2 (1.13)

The equation hints about some intuition on the nature of the process. When the
exchanged momentum tends to zero, entering in the fully coherent regime, the form factor
just results in its normalization, which in our toy case it’s simply the number of compo-
nents - that is to say, the experiment cannot say anything about the substructure of the
target, just its size. In other words, the target behaves like a single object, with all pieces
recoiling together.

This is entirely consistent with what would be expected when framing the question
of coherence as the probing of inner structure; from Optics, we know that the resolution
of an experiment is limited by the di�raction limit, so one cannot probe distances much
smaller than the wavelength of the incident light. For a matter probe, the relevant wave-
length is the de Broglie wavelength ⁄ = 1

|q̨| , in natural units, so if we impose the coherency
condition, we obtain

⁄ = 1
q

q=⁄
≠1

≠≠≠≠æ qR π 1 =∆ R

⁄
π 1 (1.14)

which is equivalent to requiring that the probe has wavelength larger than the
size of the target. Thus, in this simplified example, Eq. (1.13) tells us that, up to a
normalization which can be extracted from F, we are parametrizing the process as a
point-like interaction modulated by some correction encoded in the Form Factor which
addresses the substructure of the target.
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Multipole Expansion and Form Factors

While quite simple and elegant, the previous pedagogical example helped to high-
light some important features. If the coherency condition from (1.11) is satisfied, we can
expect an enhancement for the cross section with respect to the one corresponding to a
single component. Though, the exact expression will depend on the form factor, which
modulates this enhancement while tracking to some degree the substructure of the target
accessible by the probe, as a function of the exchanged momentum.

Things, however, are not quite so simple. In general, the target can have some
complex substructure tying its components together, and the resulting amplitude will not
be computable in a simple, closed form. The proper procedure to be followed is quite long
and will not be approached in full here; excellent modern and complete descriptions of
the formalism can be found in [40, 41], with applications to Dark Matter scattering, and
a recent practical application to neutrino scattering is also shown in [42]. We present a
brief overview of the procedure involved:

• For most practical applications, we’re interested in the case where the exchanged
momentum is small to take advantage of the coherency enhancement, and thus we
can assume that q π mT , with the latter being the mass of the target nucleus. We
should then take the non-relativistic limit of the amplitude during the procedure,
or alternatively work with an e�ective non-relativistic description of the operators;

• Decompose the relevant operators for the process of interest, in a basis of products
of operators acting only on the internal structure of the target, times others acting
only on the remaining degrees of freedom;

• Perform a multipole expansion expanding the resulting matrix elements over a basis
of spherical tensors, assuming the target’s internal state has well-defined angular
momentum;

• Apply the Wigner-Eckart Theorem to reduce the matrix elements, and proceed to
average over the spins;

• Write the operators in terms of Response functions, applying selection rules to cancel
the irrelevant contributions and compute the rest of Clebsh-Gordan coe�cients;

• Compute the reduced matrix elements, which will often require to assume a de-
scriptive model for the target, in order to construct the total angular momentum
eigenstates and get any other relevant quantum numbers.

While the procedure is quite complex, in general it is still possible to sum the
contributions of the response functions to define a form factor (usually truncating the
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expansion to the leading multipoles). This way, eq. (1.13) stills holds, albeit with mod-
ifications depending on the target composition, and with the caveat that F (q) will also
encode e�ects due to the operators related to the probe, and not only to the target. This
means that, for example, one could not factor the cross section into a term with charges
from the underlying interaction and another with the compositeness of the target encoded
in the form factor in the most general scenario [42].

This formalism also reveals some non-trivial behavior concerning the loss of co-
herence encoded in the form factor. Among the response functions RT (q) (where the
subscript denotes the corresponding generating spherical tensor T ) in a general case, not
all (once normalized) satisfy RT (0) = 1 with a decaying behavior as the exchanged mo-
mentum grows. In fact, some of the responses are fully non-coherent, in the sense that
limqæ0+ RT (q) = 0. Still, they might interfere with fully coherent responses to produce
a semi-coherent enhancement e�ect, as described in [42], and thus become relevant at
higher momentum exchanges close to the coherency limit given by eq. (1.11).

Nuclear Targets and Helm Form Factor

Given all of those considerations about the procedure in the previous section, com-
puting the necessary responses for a nuclear target can be incredibly di�cult; intricacies
of the formalism aside, at some point it will be necessary to assume a nuclear model and
compute the density matrix (which is very non-trivial for most elements) besides endless
scores of Clebsh-Gordan coe�cients. Still, it might be worth the work involved, given that
we expect a very large enhancement of the order of A2 for isospin-invariant interactions,
or at worst some function f(A, Z)2 > 1, except in the case where there is some very fine
cancellation. Furthermore, most of the relevant coherent scattering experiments will rely
on detectors filled with nuclear targets. Thus, it would be convenient to obtain at least a
practical approximation of the form factor in order to perform predictions.

In the literature, the one adopted most often is the Helm Form Factor[43], char-
acterized by a radius parameter c(A) (corresponding to the radius to half-maximum of the
charge distribution) and a surface thickness s (corresponding to the thickness separating
boundaries encompassing 10% to 90% of the maximum of the charge distribution). Those
parameters were initially fitted using elastic scattering of electrons o� even-even nuclei,
following a Born approximation for the cross section, but have since been refined with
other alternative parametrizations. Instead of c(A), current literature usually works with
the di�raction Radius R0, expressed in terms of the measured nuclear root-mean-squared
(charge) radius RN , as will be shown next.

The Helm form factor is particularly convenient due to its closed analytic form

F N
Helm(q) = 3j1(qRN

0 )
qRN

0
e≠q

2
s

2
/2, (1.15)
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with [44]

RN
0 =

Û
5
3RN ≠ 5s2,

s ƒ 0.9fm .

(1.16)

and j1 being the spherical Bessel function of the first kind, N = {p, n} defines a particular
nucleon and RN is the nuclear rms radius for a given nucleon distribution. Whenever
necessary, we shall refer to [45] for the reference values.

Given that only the coherent responses, by definition, are maximal at zero-momentum
exchange, it’s expected that uncertainties due to the form factor are small for very low
momentum. Therefore, most applications of coherent scattering o� nucleus should not be
largely a�ected by the choice of the Helm one except close to the limit in eq. (1.11). We
shall comment briefly about this again later in Part II.

Summary

Summarizing, the phenomenon of coherent scattering allows for a constructive
interference between amplitudes of a composite target, enhancing the cross section in
comparison to a single-component process. In the case of a nuclear target, if the coher-
ence condition is satisfied, the enhancement factor will be approximately proportional to
the mass number squared of the nucleus in question, massively boosting the likelihood
of interaction in comparison to a single-nucleon process. For neutrino and dark matter
experiments, which deal with very small couplings and therefore low event rate expecta-
tions, this opens up the possibility to probe a larger region of the available phase space
accessible by the lower energy range processes.

We shall focus our attention on one such coherent scattering scenario, of a neutrino
o� a nucleus, known as CE‹NS; this will be the our main tool throughout this text to
explore the question of what may lie ahead in our search for Physics Beyond the Standard
Model.

1.3 CE‹NS
An acronym to “Coherent Elastic Neutrino-Nucleus Scattering”, CE‹NS was first

predicted by Friedmann in his 1974 paper [46], but eluded discovery for over four decades,
with the first confirmed observation only happening in 2017, by the COHERENT Collab-
oration [47]. The reason is the immense di�culty involved in observing the phenomenon;
detection requires to measure the energy of the recoiling nuclear target inside the detector,
which is incredibly small. Following from the last section, the limited momentum window
imposed by the coherence condition (1.11) plus assuming the non-relativistic limit implies
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recoil energies of the order of

qR π 1 =∆ ER ƒ q2

2mT
. 1

2mT R2
R¥2RA¥2r0A

1/3

≠≠≠≠≠≠≠≠≠≠æ
mT ¥Amp

1
8mpr2

0A5/3 (1.17)

which, for a reasonably bulky nucleus with A = 125, and writing units explicitly, is

ER . (hc)2

8mpr2
0A5/3 = (1.239841 ◊ 10≠6)2eV2 · m2

8(0.938GeV)(1.44fm2)55 ¥ 50 keV (1.18)

and generally of the order of O(10 keV) for most viable choices of target. This requires ex-
tremely precise experimental control of uncertainties and extremely low detection thresh-
olds. It is no wonder that it remained as a prediction for such a long time, with the
necessary technology still far in the future at the time of its proposal; Freedman even
remarked, in [46]:

Our suggestion may be an act of hubris, because the inevitable constraints of
interaction rate, resolution, and background pose grave experimental di�cul-
ties for elastic neutrino-nucleus scattering.

With its discovery established [47, 48], the community is opening the doors to a
precision phase of CE‹NS, designing multiple approaches to measure it with increased
statistics and higher accuracy. Currently, the interest in CE‹NS is manifest in mainly
three fronts:

• Within the paradigm of the Standard Model, it allows to measure the sine-squared
of the Weinberg/Weak mixing angle (sin2 ◊W ) at very low energies, as well as other
experimentally challenging nuclear properties, such as the neutron skin [49];

• If the necessary parameters and emerging relevant properties can be determined
independently (for instance, by the PREX-II collaboration [50]), it can serve as a
powerful tool to probe New Physics scenarios, which we expect to further enhance
the cross section in some sector of the parameter space, benefiting from the coherent
enhancement to yield potentially measurable results.

• In the context of Dark Matter direct detection, it serves as a source of irreducible
background due to the scattering of solar neutrinos, possibly limiting the discovery
potential of the next generation of experiments as they push sensitivity limits down
into this so called “neutrino floor” sector of the phase space. We refer to [51] for a
description of this e�ect in a pure SM context, or [52–55] for the e�ect of NP.

As an added bonus, much of the formalism can also be carried to the process of
coherent Dark Matter scattering[41], which needs to be taken into account properly for
true exclusion limits in direct detection.
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The rest of this work will be organized as follows: In the next chapter we shall
formalize the concept of CE‹NS, combining the definitions we presented thus far with
appropriate mathematical descriptions. Next, we shall see how the results derived can be
modified when considering Physics beyond the Standard Model, focusing on the case of
light Z’ models. We’ll then close Part I by addressing the statistical formalism needed
to extract information from experimental data. Finally, in Part II, we shall describe a
few proposals for future CE‹NS experiments, and apply the tools we introduced to probe
their sensitivity for the aforementioned class of models, in a compared analysis to current
COHERENT results, among other bounds. Our objective will be to justify CE‹NS as a
powerful tool to look at some interesting New Physics scenarios, as well as rea�rming the
viability of the highlighted experimental proposals.
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2 CE‹NS Formalism

In the previous chapter, we have introduced in broad strokes the notion of CE‹NS,
building upon a need for tools to probe scenarios related to Dark Matter and Neutrino
Physics. In this chapter, we shall formalize the description of CE‹NS from its fundamen-
tals in the neutral current interaction between quark and neutrino, reaching a formula for
a measurable event rate at dedicated experiments.

2.1 Process Kinematics

Figure 6 – Schematic view of the CE‹NS process, an incident neutrino scatters o� a nu-
clear target T, which recoils as if it was a single entity

Before getting into the specifics of the amplitude and overall cross section compu-
tations, it’s useful to take a look at the kinematics of the CE‹NS process. Following what
we mentioned previously, the picture here is having the neutrino scatter o� a nucleus in
such a way that the latter recoils elastically as if it were a single body. Following the
schematics of Figure 6, we’ll define the following variables:

�E(‹) = E ≠ E Õ, (2.1)

q̨ = p̨Õ ≠ p̨ = k̨ ≠ k̨Õ, (2.2)

where primed quantities are related to the final state. We’ll define for this section the
notation Îx̨Î © x for the modulus of three-vectors, and write four-vectors with their
Lorentz index explicit while representing associated scalar quantities, such as xµxµ © x2

µ,
for clarity.

Back to the scattering scenario, imposing conservation of energy in the lab frame
(where the nucleus is initially at rest) yields:

E + mT = E Õ + ET (2.3)

and furthermore, since the process is elastic, the overall kinetic energy must be conserved
as well. There is no change in the target nucleus. As such, we may define ET = mT + ER,
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where the last term is the recoil energy, and write it in term of our previously defined
quantities as

E + mT = E Õ + mT + ER =∆ ER = �E(‹). (2.4)

As expected, the recoil energy is equal to the variation in the energy of the neutrino.
Likewise, conservation of three-momentum constrains that the nucleus recoils with mo-
mentum q̨ in the lab frame. Assembling the four-vector of the recoiling nucleus in the
same frame, we can also use an invariant to find an useful relation:

ÎkÕ
µÎ2 = Î(mT + ER, q̨)Î2 = (mT + ER)2 ≠ Îq̨Î2 = m2

T + 2mT ER + E2
R ≠ q2 (2.5)

but the squared norm of the four-momentum on the LHS is just the square of the invariant
mass of the nucleus, so

m2
T = m2

T + 2mT ER + E2
R ≠ q2 =∆ q2 = 2mT ER + E2

R. (2.6)

Since we are interested in the CE‹NS regime, it’s interesting to check whether the typical
scales of the problem, defined via eq. (1.11), are always in the non-relativistic regime
for all choices of target nucleus. In natural units, we can consider that a target T with
mass number A becomes relativistic when q ƒ mT ¥ Amp, where mp is the proton mass.
Imposing the coherency condition, this implies

1 ∫ qR ƒ mT R ¥ (Amp)(2r0A
1/3) = 2mpr0A

4/3 (2.7)

and, replacing the values for the proton mass and the proton charge radius r0 on the last
term, yields

2mpr0A
4/3 = 2(0.938 ◊ 109eV)(1.2 ◊ 10≠15m)A4/3

1.238 ◊ 10≠6eV · m
= 1.818A4/3 > 1. (2.8)

which violates the coherency condition for any value of the mass number. Thus, we reach
a contradiction, meaning that the CE‹NS regime defined by the coherency condition and
the relativistic limit are incompatible, and cannot be simultaneously satisfied. Therefore,
in general, we can assume the non-relativistic limit safely whenever working in the CE‹NS
regime. In particular, this implies we can approximate the last term in eq. (2.6) as

q2 ¥ 2mT ER. (2.9)

This is in principle only valid for the lab frame, however we can prove its validity for any
inertial frame looking at the Lorentz-invariant Mandelstam variable t:

t = (kÕ
µ ≠ kµ)2 = q2

µ = (mT + ER ≠ mT , q̨)2 = E2
R ≠ q2 = ≠2mT ER (2.10)

where for the last equality we applied eq. (2.6).
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So, for the relevant CE‹NS phase space, it will be useful to keep in mind that
≠t = ≠q2

µ = q2 = 2mT ER. We can also define some relations between the incident
neutrino energy and the resulting recoil. First, let’s check that the exchanged momentum
follows

q2 = |p̨Õ ≠ p̨|2 = |pÕ2 ≠ 2p̨Õ · p̨ + p2| = |pÕ2 ≠ 2ppÕ cos ◊ + p2| (2.11)

but, since in this scenario the neutrinos are massless, p2
µ = E2

‹ ≠ p2 = 0 =∆ p = E‹ , and
the same applies for the primed quantities. Therefore

q2 = |E2
‹ + E Õ2

‹ ≠ 2E‹E Õ
‹ cos ◊|. (2.12)

Clearly, the maximum momentum exchange occurs with ◊ = fi, but this implies p̨ = ≠p̨Õ,
so E Õ

‹ = pÕ = p = E‹ . We conclude that

q2
max = E2

‹ + E Õ
‹ + 2E‹E Õ

‹ = 4E2
‹ . (2.13)

So, for a given neutrino energy, the maximum recoil energy the scattering can produce is
set by replacing the previous expression into eq. (2.6):

2mT Emax
R + (Emax

R )2 = q2
max =∆ 2mT Emax

R + (Emax
R )2 = 4E2

‹

) Emax
R =

Ò
m2

T + 4E2
‹ ≠ mT = mT

Q

ca

ı̂ıÙ1 + 4E2
‹

m2
T

≠ 1

R

db

= mT

A

1 + 2E2
‹

m2
T

+ O

A
E4

‹

m4
T

B

≠ 1
B

¥ 2E2
‹

mT
. (2.14)

We can also ask, given a fixed recoil energy (eg. the detector threshold), what is
the minimum energy of the incident neutrino to provoke an event equal or above it. We
start from the same relation:

4(Emin
‹ )2 = 2mT ER + E2

R =∆ Emin
‹ =

Û
mT ER

2 + E2
R

4 ¥
Û

mT ER

2 , (2.15)

where we took the non-relativistic limit for the last step.

With this, we are ready to compute the cross section for the process, and the
expected rate of events in an experiment.

2.2 Standard Model Cross Section for CE‹NS
The CE‹NS process, at its core, consists of a low-momentum Z-boson exchange

between the incident neutrino and a quark in the target nucleus. However, keeping in
mind the discussion in the previous chapter, we should be careful about which are the
degrees of freedom we are actually probing in the relevant scale. Ultimately, we are far
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Figure 7 – Feynman diagram for the CE‹NS process in the Fermi-like theory.

below the required energies to meaningfully probe the nucleon substructure, given that we
are within the vicinity of the coherency condition, and nuclear e�ects should dominate.
Furthermore, as evidenced in the deduction that led to eq. (2.8), we are also close to the
non-relativistic limit.

All of the aforementioned facts feed into the intuition that a natural description of
the interaction could be made assuming protons and neutrons as the degrees of freedom
instead of quarks. We shall proceed by introducing a Fermi-like Lagrangian to generate
the process in terms of nucleon states, and later show that the result obtained matches
the computation made using the usual Standard Model Lagrangian. This will lead into
a brief discussion on E�ective Field Theory, which will be useful in later chapters when
talking about our choices of Z’ models of interest.

A Fermi-like Theory CE‹NS cross section

Let’s start by writing down a trial Lagrangian, and discuss some of its features:

≠Le� = GF

Ô
2(‹̄“µPL‹)

Ë
N̄“µ(QV

N + QA
N“5)N

È
, (2.16)

where PL = 1≠“5
2 is the left-handed projector, and N = n, p denotes neutrons and

protons.

We are being quite general, admitting both vector and axial contributions, and
while the pre-factors and couplings have been intentionally chosen for later convenience,
there’s no real loss of generality. However, one thing that stands out is that this four-
fermion operator is a term of dimension 6, which is not renormalizable. This demands
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that GF has dimensions of E≠2, and hints that this description is only valid up until some
regime, breaking down at some cuto�. We’ll set these points aside for now, and proceed
with the computation of the amplitude via the diagram in Figure 7, with

A = iGF

Ô
2ū(pÕ)“µPLu(p)

e
T Õ

--- N̄“µ(QV
N + QA

N“5)N |T Í

© iGF

Ô
2LµHµ (2.17)

where spinorial indices are being omitted for simplicity of notation, but are being prop-
erly accounted for. We have essentially a product of two terms: a lepton component and
a hadronic component. The latter involves applying the nucleon operators in the asymp-
totic nuclear states, which as discussed in section 1.2, can be highly non-trivial. Still,
we’ll follow a simplified prescription from [41] in order to parametrize the explicit ex-
changed momentum dependence within form factors, which we will not calculate directly.
In summary, we’ll expand the target nuclear state as a sum over single-nucleon states with
well-defined angular momenta, inserting a factor 2mT

2mN
= mT

mN
in order to account for the

state normalization in the non-relativistic limit. We will omit the specific momentum/spin
labels since they won’t be relevant, and not worry about other labels of these states, since
any dependence on extra degrees of freedom will be encoded in the structure components
f i

N , to be introduced later. Emphasizing the proper normalization of states, we have:

A =
ÿ

N

iGF

Ô
2ū(pÕ)“µPLu(p) mT

mN

e
N Õ

--- N̄“µ(QV
N + QA

N“5)N |NÍ

= iGF

Ô
2

Ë
ū(pÕ)“µPLu(p)

È ÿ

N

mT

mN

Ë
QV

N

e
N Õ

--- N̄“µN |NÍ + QA
N

e
N Õ

--- N̄“µ“5N |NÍ
È

(2.18)

First, we’ll direct our attention to the hadronic term. We are summing over the
nucleons making up the target and, as seen in the toy example in Sec. 1.2, ideally we
want to obtain an enhancement factor proportional to the number of components. Our
interaction, though, is not necessarily isospin-invariant; still, we could expect that it leads
to Z and (A ≠ Z) factors for protons and neutrons, respectively, times some form factor.
Going forward:

Hµ =
ÿ

N

mT

mN

Ë
QV

N

e
N Õ

--- N̄“µN |NÍ +
e
N Õ

--- N̄“µQA
N“5N |NÍ

È

=
ÿ

N

mT

mN

Ë
QV

NfV
N (q)ūN(kÕ)“µuN(k) + QA

NfA
N (q)ūN(kÕ)“µ“5uN(k)

È
. (2.19)

Here, we can apply a non-relativistic limit for the nucleon bilinears, justified by
eq. (2.8). The process is straightforward, involving choosing a representation for the Dirac
spinors and taking the “ æ 1 limit, where “ is the Lorentz factor. However, it is quite long
and not particularly illuminating, so it will be omitted here. Instead, we’ll refer to Sec. F
of [41] for further details and just present the results. We’ll write explicitly the spinorial
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indices here for clarity, before dropping them again when returning to the amplitude
calculation.

Assuming the chiral basis, the spinor can be written as:

uN(p̨, s) = 1
Ò

2(Ep + mN)

S

U(pµ‡µ + mI2)›s

(pµ‡̄µ + mI2)›s

T

V NR≠≠æ 1Ô
4m

S

U(2mI2 ≠ p̨ · ‡̨)›s

(2mI2 + p̨ · ‡̨)›s

T

V (2.20)

and the bilinears reduce to

ūÕ
N“µuN

NR=
Q

a 2mN”s,s
Õ

K̨”s,s
Õ ≠ 2iq̨ ◊ s̨N

R

b, ūÕ
N“µ“5uN

NR=
Q

a2K̨ · s̨N

4mN s̨N

R

b . (2.21)

where we defined K̨ = k̨ + k̨Õ and s̨N = ›†
s

Õ
‡̨
2 ›s, and stressing that the terms in parenthesis

above are four-vectors, not spinors. Before replacing these expressions in the hadronic
term, however, it’s useful to consider the impact of each of these components.

• s̨N is associated with the spin of the nucleon, and since we are summing over each
of the nuclear components, the overall contribution of this term will depend on the
number of unpaired nucleons in the orbitals accessible by the probe. This should be
exactly zero for even-even nuclei, and close to zero for most viable targets, and thus
we can safely ignore this term. This essentially kills the axial contribution, so we’re
left with the vector term.

• In the same vein, the non-relativistic approximation made depends on the momen-
tum of the nucleus being dominated by its mass, so we can expect the zeroth-
component of the vector current to dominate over the spatial components in this
regime; we’ll also safely drop the latter (ie. introduce a Kronecker delta ”i,j with
j = 0).

Returning to the full hadronic term, we’re left with

Hµ =
ÿ

N

QV
N

mT

mN
2mNfV

N (q)”µ0

=
ÿ

{p}
QV

p mT 2fV
p (q)”µ0 +

ÿ

{n}
QV

n mT 2fV
n (q)”µ0

= 2mT

1
ZQV

p F V
p (q) + (A ≠ Z)QV

n F V
n (q)

2
”µ0

, (2.22)

where we defined the proton and nuclear form factors as the average of the structure
components. Replacing it back into the amplitude:

A = iGF

Ô
2

Ë
ū(pÕ)“µPLu(p)

È
2mT

Ë
ZQV

p F V
p (q) + (A ≠ Z)QV

n F V
n (q)

È
”0µ

= iGF

Ô
2

Ë
ū(pÕ)“µPLu(p)

È
2mT QT ”0µ

(2.23)
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with the definition QT © ZQV
p F V

p (q)+(A≠Z)QV
n F V

n (q) for the e�ective charge of the tar-
get, and we’ve dropped the V superscript since there is no axial contribution to introduce
ambiguity. Now, squaring the amplitude and summing over the spins:

|A|2 = 2G2
F 4m2

T Q2
T Tr

Ë
/pÕ“µPL/p“‹PL

È
”µ0”‹0

= 8G2
F m2

T Q2
T pÕ

–p— Tr
Ë
“–“µPL“—“‹PL

È
”µ0”‹0.

(2.24)

We remark that we are summing, and not averaging over the initial states spins as usual.
For the massless left-handed neutrinos, we have only a well-defined negative helicity state,
and not a mixed density matrix, so there is no averaging required. Likewise, our sum over
the nucleon states was constructed with the assumption that they can be described with
well-defined angular momenta, and in particular the population of nuclear states imposes
that they should be states with well-defined spin. Again, there is not an average.

Moving on, writing the projectors explicitly, and using linearity of the trace results
in

Tr
Ë
“–“µPL“—“‹PL

È
= 1

4
1
Tr

Ë
“–“µ“—“‹

È
≠ Tr

Ë
“–“µ“—“‹“5

È

≠ Tr
Ë
“–“µ“5“—“‹

È
+ Tr

Ë
“–“µ“5“—“‹“5

È2 (2.25)

which we can solve using the trace identities

Tr
Ë
“–“µ“—“‹

È
= 4

Ë
g–µg—‹ + g–‹gµ— ≠ g–—gµ‹

È
(2.26)

and
Tr

Ë
“–“µ“—“‹“5

È
= ≠4iÁ–µ—‹ (2.27)

besides using the anticommutativity of “5 and its product with itself giving the identity
to sum the first and fourth, and second and third terms. We obtain:

Tr
Ë
“–“µPL“—“‹PL

È
= 1

2
1
Tr

Ë
“–“µ“—“‹

È
≠ Tr

Ë
“–“µ“—“‹“5

È2

= 2
1
g–µg—‹ + g–‹gµ— ≠ g–—gµ‹ + iÁ–µ—‹

2 (2.28)

and inserting back into the expression for the amplitude,

|A|2 = 8G2
F m2

T Q2
T pÕ

–p—

Ë
2

1
g–µg—‹ + g–‹gµ— ≠ g–—gµ‹ + iÁ–µ—‹

2È
”µ0”‹0

= 16G2
F m2

T Q2
T

A

pÕ0p0 + pÕ0p0 ≠ pÕ · p +⇠⇠⇠⇠⇠⇠:0
ipÕ

–p—Á–0—0
B

= 16G2
F m2

T Q2
T

A

2E ÕE + q2

2

B
(2.29)

where we used in the second line that ≠q2 = t = (pÕ ≠ p)2 = ≠2pÕ · p, following Sec. 2.1,
since the neutrinos are treated as massless.

Using ER = E ≠ E Õ and q2 ¥ ≠|q̨|2 (again, shown in Sec. 2.1), we obtain a final
expression for the averaged amplitude:

|A|2 = 32G2
F m2

T Q2
T E2

5
1 ≠ ER

E
≠ mT ER

2E2

6
. (2.30)
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Using the two-body phase space in the lab frame, we can finally write down the
di�erential cross section

d‡

dER
= |A|2

4
Ô

p · k

1
8fi|p̨|

=
32G2

F m2
T Q2

T E2
Ë
1 ≠ ER

E ≠ mT ER

2E
2

È

32fimT E2

= G2
F mT

fi

5
1 ≠ ER

E
≠ mT ER

2E2

6
Q2

T

= G2
F mT

fi

5
1 ≠ ER

E
≠ mT ER

2E2

6 1
ZQpFp(q) + (A ≠ Z)QnFn(q)

22
. (2.31)

While we have not defined the form factors nor the charges in this model, we can
check that we have obtained something that indeed looks like the correct cross section,
comparing to the literature [42]. While the former will not be computed explicitly here,
we’ll obtain some intuition on the latter by looking at the same computation in the
Standard Model.

Standard Model CE‹NS cross section

Figure 8 – Feynman diagram for the CE‹NS process in the Standard Model

This time, we’re adopting the usual Standard Model Lagrangian, with quark de-
grees of freedom; the relevant interaction term is

≠LNC
SM ∏ gZZµ

Ë
f̄

1
· 3

L + Q sin2 ◊w

2
“µPLf ≠ f̄

1
≠Q sin2 ◊W

2
“µPRf

È
(2.32)
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which we can also represent as

≠LNC
SM ∏ gZZµ

C

f̄

A
· 3

L ≠ 2Q sin2 ◊w

2

B

“µf ≠ f̄

A
· 3

L

2

B

“µ“5f

D

(2.33)

where · 3
L is the third generator of SU(2)L, Q is the electric charge, ◊W is the weak mixing

angle/Weinberg angle and we’ve written the interaction in an explicit V-A form.

Let’s now write down the corresponding amplitude, via the diagram in Figure 8:

A = (≠i)g2
Z

2
Ë
ūL(pÕ)“µuL(p)

È
(≠i)

gµ‹ ≠ qµq‹

m
2
Z

q2 ≠ m2
Z

(≠i)
e
T Õ

--- q̄“‹

A
· 3

L ≠ 2s2
W Qq

2

B

q |T Í

≠ (≠i)g2
Z

2
Ë
ūL(pÕ)“µuL(p)

È
(≠i)

gµ‹ ≠ qµq‹

m
2
Z

q2 ≠ m2
Z

(≠i)
e
T Õ

--- q̄“‹“5
A

· 3
L

2

B

q |T Í

= i
g2

Z

4
Ë
ūL(pÕ)“µuL(p)

È gµ‹ ≠ qµq‹

m
2
Z

q2 ≠ m2
Z

1e
T Õ

--- q̄“‹
1
· 3

L ≠ 2s2
W Qq

2
q |T Í

+
e
T Õ

--- q̄“‹“5
1
· 3

L

2
q |T Í

2

© i
g2

Z

4 Lµ
gµ‹ ≠ qµq‹

m
2
Z

q2 ≠ m2
Z

(H‹
V + H‹

A) (2.34)

We have an axial and a vector term, each split into the neutrino current term,
the Z-boson propagator and the hadronic matrix element. Let us focus on the latter first;
following the same prescription as before, we’ll expand the nuclear states into nucleon
ones, and then to the same to obtain to get down to quarks. First, for the vector term,

Hµ
V =

e
T Õ

--- q̄“‹
1
· 3

L ≠ 2s2
W Qq

2
q |T Í

=
ÿ

N

mT

mN
fV

N (q)
e
N Õ

--- q̄“‹
1
· 3

L ≠ 2s2
W Qq

2
q |NÍ

(2.35)

Before proceeding to the quark matrix elements, we know the overall shape of the re-
sult given the possible Lorentz structure for the operator allowed by discrete symmetries
(parity and charge conjugation)[41]; the current term can be decomposed as

e
N Õ

--- q̄
1
· 3

L ≠ 2s2
W Qq

2
“‹q |NÍ =

ÿ

q

QW
q ū(pf )

C

“µF N,V
1,q (q) + ‡µ‹ iq‹

2mT
F N,V

2,q (q)
D

u(pi)

(2.36)
if the nucleon states are states with well-defined on-shell momenta pi,f , where we defined
the quark weak charge QW

q © · 3
L ≠ 2s2

W Qq, and F1 and F2 are respectively the Dirac and
Pauli form factors, encoding the exchanged momentum dependency within each quark for
each nucleon.

However, the second term is suppressed in the non-relativistic limit, again guar-
anteed by the coherency condition. Given the typical scale of the nucleon, which we can
approximate by the order the proton charge radius, a regime satisfying the coherency
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condition for the nucleus implies that for all purposes we are close to the zero-value of the
form factors. At that limit, we are simply summing over contributions from the valence
quarks of a given nucleon, so splitting eq. (2.36) we can define

proton:
ÿ

q

QW
q ū(pf )“µu(pi)F p

1,q(q) NR=
1
2QW

u + QW
d

2
ū(pf )“µu(pi) © QW

p ū(pf )“µu(pi)

(2.37)

neutron:
ÿ

q

QW
q ū(pf )“µu(pi)F n

1,q(q) NR=
1
QW

u + 2QW
d

2
ū(pf )“µu(pi) © QW

n ū(pf )“µu(pi),

(2.38)

and inserting these back into eq. (2.35), we obtain

Hµ
V =

ÿ

N

mT

mN
QW

N fV
N (q)ū(kÕ)“µu(k) (2.39)

which is of the same form as the vector term in eq. (2.19).

In a nutshell, we did exactly what we first assumed was reasonable in the previous
model: reparametrize the amplitude in terms of the appropriate degrees of freedom. This
time, however, we obtained a clear interpretation of the relation between the nucleon
charges we had assigned and the fundamental quark couplings, which reduces to a simple
sum over valence quarks in this low-momentum limit. We can’t claim yet, comparing with
eq. (2.19), that QN = QW

N because of the pre-factors present in the overall amplitude;
still, they should di�er at most by a multiplicative constant, which we’ll determine by the
end.

The procedure for the axial hadronic term runs analogously, with the decomposi-
tion of the nucleon matrix element yielding [42]:

e
N Õ

--- q̄
1
· 3

L

2
“‹“5q |NÍ =

ÿ

q

·Lū(pf )
C

“µ“5GN
A,q(q) ≠ “5qµGN

P,q(q) + ‡µ‹q‹“5GN
T,q(q)

2mT

D

u(pi)

(2.40)
where A, P, T stand for axial, pseudo-scalar and tensor components, respectively. Just
like in the previous case, the non-relativistic limit allows us to discard the second term,
resulting in

=
ÿ

q

·Lū(pf )“µ“5GN
A,q(q)u(pi). (2.41)

yielding something exactly analogue to eq. (2.36). We will skip the following steps, since
we already know this contribution will be suppressed in the amplitude when taking the
non-relativistic limit.

Finally, let’s return to the amplitude in eq. (2.34), already dropping the axial term:

A = i
g2

Z

4 Lµ
gµ‹ ≠ qµq‹

m
2
Z

q2 ≠ m2
Z

H‹
V

(2.42)
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this time, let’s focus on the propagator term. The mass of the Z boson is around
91 GeV; compared to that, we know from eq. (1.17) the typical recoil energy for the
process, which is related to the exchanged four-momentum by ≠q2 = 2mT ER. Therefore,
the typical scale for q is of the order of

Ò
2A(0.938 GeV) ◊ 50 keV ¥ 10

Ô
A MeV, which

is still far below the mass of the Z boson even for bulky stable nuclei with A > 100. At
this scale, the Z cannot be produced on-shell, and its influence will be restricted to short
distances. That means we can approximate q2 ≠ m2

Z ƒ ≠m2
Z and q

2

m
2
Z

ƒ 0, which results
in the following change to the propagator

gµ‹ ≠ qµq‹

m
2
Z

q2 ≠ m2
Z

mZ∫ÎqÎ≠≠≠≠≠æ ≠ gµ‹

m2
Z

. (2.43)

and the amplitude now becomes (dropping again the V superscript since there’s no axial
term)

A = i
g2

Z

4 Lµ gµ‹

m2
Z

H‹ = i
g2

Z

4m2
Z

LµHµ. (2.44)

This is exactly the amplitude from equation eq. (2.17), up to a pre-factor. In particular,
the formulation and weak charge definitions would be equal if GF

Ô
2 = g

2
Z

m
2
Z

.

While previously GF was a general constant in the previous model’s cross section,
now we’ll identify it with the Fermi Constant of the Standard Model, defined at tree-level
as GF = 1

v
2Ô

2
. We can then combine it with the definition of the Z mass:

GF = 1
v2Ô2

Ω mZ = gZv

2
and thus, unsurprisingly, we obtain

g2
Z

4
Ô

2m2
Z

= g2
Z

4
Ô

2g
2
Zv

2

4

= 1
v2Ô2

= GF (2.45)

which confirms that indeed our whole derivation was consistent between the two models.
The rest of the computation of the cross section occurs in following the same as before,
since the amplitude and phase space are the same. Indeed, eq. (2.31) is the correct CE‹NS
cross section [42], with

Qn = QW
n = QW

u + 2QW
d

Qq=·
3
L≠2Q sin2

◊W≠≠≠≠≠≠≠≠≠≠≠æ= 1
2 ≠ 4 sin2 ◊W

3 ≠ 1 + 4 sin2 ◊W

3 = ≠1
2 (2.46)

Qp = QW
p = 2QW

u + QW
d æ= 1 ≠ 8 sin2 ◊W

3 ≠ 1
2 + 2 sin2 ◊W

3 = 1
2 ≠ 2 sin2 ◊W (2.47)

Before moving on to discuss the meaning of these matching results, we’ll present
some import considerations and common variations on eq. (2.31) found in the literature:

• It’s common to drop the ER/E term, since most experiments have a neutrino flux
peaking at energies around 1 ≠ 100 MeV, meaning that

ER

E
+ mT ER

2E2 = ER

E

3
1 + mT

2E

4
ƒ ER

E

mT

2E
(2.48)
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for most of the range of the flux, which will generate the majority of events.

• There’s some freedom in how we define the charges, up to a multiplicative constant,
as we emphasized during the derivation of the amplitude; some texts (eg. [42])
prefer to work with QW

N = 2· 2
L ≠ 4Q sin2 ◊W , which would result in a factor of 1/4

multiplying eq. (2.31), but both results are the same.

• The values for the weak charges in the Standard Model actually bring about an
interesting cancellation - using the low-energy value of sin2 ◊W ƒ 0.2385, the nucleon
charges are

QW
n = ≠1

2 = ≠0.5 (2.49)

QW
p = 1

2 ≠ 2 ◊ 0.2385 = 0.023 (2.50)

so, in the Standard Model, the proton contribution is small compared to the neutron
one, and CE‹NS cross section is approximately proportional to the neutron number
N = (A ≠ Z).

• In principle, the form factors for protons and neutrons should be di�erent, but a
common approximation is to take Fp(q) = Fn(q) as there is little available data
for the neutron radius and distribution for most choices of nuclei, since electron
scattering experiments are not e�ective to measure them. This can be properly
computed and coded into other quantities (such as the neutron anomalous magnetic
moment [42]) in a full computation of the form factor, but uncertainties should
be subdominant for most of the range of experiments and thus it is usually more
convenient to adopt the Helm parametrization or other approximated form.

• We still need to renormalize the theory before making predictions; radiative e�ects
can be included in di�erent ways depending on the renormalization scheme, so we’ll
follow the usual fl-parametrization in the MS scheme, referring to [44]. The nucleon
weak charges run at low energy to the following values:

Qp
V (‹e) = 0.0401, (2.51)

Qp
V (‹µ) = 0.0318, (2.52)

Qn
V = ≠0.5094 (2.53)

where the proton one acquires some flavor dependence from lepton loop corrections.
None of the experiments we are working with will use tau neutrinos, so we’ll just
specify the values for electron and muon neutrinos.
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Throughout this work, we’ll work with the following form for the di�erential cross
section, in order to compare sensitivity results with [44, 56]:

d‡

dER
= G2

F mT

fi

3
1 ≠ mT ER

2E2

4 Ë
ZQpFp(q) + (A ≠ Z)QnFn(q)

È2
,

Qn = ≠1
2 , Qp = 1

2 ≠ 2 sin2 ◊W .

(2.54)

2.3 A Brief Interlude on E�ective Field Theory
In the previous subsections, we have shown that the two descriptions actually yield

the same cross section, once matching the couplings and charges. This is no coincidence,
and points to a deeper principle of Physics, concerning separation of scales. In a general
sense, most phenomena can be approximated with a local collection of contributions which
does not need to include e�ects from far removed scales. For example, special relativity
need not be invoked in scenarios with velocities much lower than the speed of light, in
which Newtonian mechanics is a perfectly fine approximation.

In the case of the neutral current process, we are dealing with energies far below
the mass of the Z-boson, such that it’s far o�-shell, and its dynamics does not play a large
role. As such, its propagator can be expanded in a Maclaurin series as

1
q2 ≠ m2 = ≠1

m2
1

1 ≠ q
2

m
2

= ≠1
m2

C

1 + O

A
q4

m4

BD

(2.55)

as long as m2 > |q2|. Furthermore, should that di�erence be significant, truncating the
series at the first term would already give a very precise approximation. As such, we
diagramatically represent the situation as a “collapse” of the propagator, represented in
Figure 9, in which the boson exchange becomes manifestedly local, and at this scale the
process reproduces a contact interaction (as seen by our formulation for the Fermi-like
Lagrangian in eq. (2.16)).

The first thing to notice, however, is that this approximation is not valid at all
scales; in particular, if one were to increase the energy of the process, it would become
increasingly worse, and at the limit of its range of convergence |q2/m2| < 1, the series
would diverge. This matches up with the fact that we’d be reaching the point where the
Z-boson could be produced on-shell, and neglecting its dynamics would no longer make
sense.

Introducing a bit of terminology, we say the Fermi-like theory is an E�ective (Field)
Theory description of the neutral current interaction. It is a low energy limit of the full
theory in the Ultraviolet/UV (ie. high-energy) regime, which is the Electroweak theory,
with a cuto� set at the mass of the Z-boson. The usage of “full” might be somewhat
misleading, because the UV theory itself might also be an e�ective description for another
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Figure 9 – Schematic view of the collapse of the propagator for an E�ective interaction
in terms of the Feynman diagrams

even more fundamental theory. One could even say, when properly formulated, all Physical
theories are e�ective theories, in some sense.

In the opposite direction, in lower energy regimes, quantum chromodynamics be-
comes strongly coupled, and thus quarks become confined within nucleons. Redefining the
dynamics in favor of baryons and mesons is also an application of E�ective Field Theory,
in which we are taking an Infrared/IR (ie., low energy) limit. There are many subtleties
and advantages in applying properly the framework of E�ective Field Theory to a prob-
lem, but we’ll only focus on a few of them for our purposes. A more thorough breakdown
of the topic and its formalism can be found in [57].

Following the discussion, the main feature of an EFT consists on, within its range
of validity, giving a proper description of phenomena relying only on the relevant degrees
of freedom at that given scale. In the e�ort to probe New Physics, this will serve to great
e�ect as it will allow to parametrize our ignorance of Physics in the UV as perturbations
to the Standard Model description, by means of e�ective higher-dimensional operators
of Standard Model fields. We already did something similar in the previous example,
introducing an e�ective four-fermion operator of dimension six to derive the CE‹NS cross
section.
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This will also serve us double-duty, as the mapping of the UV amplitudes to
the Standard Model ones will introduce some redundancy, in the sense that multiple
di�erent theories can give rise to the same e�ective operator in the lower scale. Thus,
constraining processes mediated by these via experiments will be a powerful and strongly
model-independent tool to place bounds in a large class of UV models.

In summary, the E�ective Field Theory approach will be applied to be able to
neglect the e�ects of much heavier, non-dynamical states possibly required by our models
of interest due to anomaly cancellations or other e�ects. Simultaneously, it will enable
us to ready a relatively model-independent framework to systematically place limits on
certain theories. Before moving on, there is still one definition that will be needed.

2.4 Measurable Quantity - Event Rate
Now that we have computed the CE‹NS cross section, it’s necessary to connect

it to a quantity to be measured in the experiments, which will be the event rate. Our
standard experimental setup will consist of a neutrino beam colliding into a detector
array, which will trigger upon the recoil of the nuclei inside its active volume above a
certain threshold and return a signal. Running the apparatus over a given period, one can
compare the number of measured events to the expected one from the Standard Model
computation.

The event rate formula is very straightforward:

R = NT

⁄ E
max
R

E
min
R

⁄ E
max
‹

E
min
‹

dERdE‹
d‡

dER

d„

dE‹
, (2.56)

where we labeled the incoming neutrino energy E © E‹ for clarity, and NT is the number
of target nuclei in the active volume, d„

dE‹
is the di�erential incident neutrino flux and d‡

dER

is the di�erential neutrino-nucleus cross section.

In particular, some experiments can measure the energy of the recoiling nucleus
besides just triggering upon threshold sensitivity, or split contributions over another vari-
able distribution; in this case, it might be convenient to introduce an event rate per bin.
Furthermore, in cases with multiple targets or fluxes with multiple neutrino/antineutrino
flavors, we should also expand it in a sum. Thus, we obtain the general rate-per-bin Ri as

Ri =
ÿ

T

NT

⁄ E
max
R (i)

E
min
R (i)

⁄ E
max
‹

E
min
‹

dERdE‹

ÿ

{‹}

d‡(T, ‹)
dER

d„(‹)
dE‹

. (2.57)

Following Sec. 2.1, the recoil and neutrino energies are related by equations (2.15)
and (2.14), and the explicit value for the limits and shape of the flux will be defined for
each of the experiments of interest as required.
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3 Light Z’ Models

In this section, we shall define the class of models which extend the Standard
Model scenario with which we will be working with. Furthermore, we shall explore how
their introduction changes the results from the previous chapter, choosing a consistent
description to relate the parameters of this new model with the observables measured in
experiments.

3.1 Definition and Assumptions
Introducing new fields in the Standard Model must be done in a very careful

manner. While it may seem straightforward to just add the necessary new terms into
the Lagrangian, doing so improperly could upset the delicate gauge anomaly cancella-
tion within its framework, leading to an inconsistent theory. We shall explore one of the
simplest modifications available, consisting in adding a single new U(1) gauge symmetry,
which past work has already proved that it can be done in a systematic way as so not to
warp the Standard Model’s anomaly cancellations[58, 59].

Therefore, with the knowledge that the theory can be made consistent, we’ll extend
the Standard Model by adding the following to the Lagrangian:

L ∏ ≠1
4 F Õµ‹F Õ

µ‹ + igZ
Õ
ÿ

i,j

Z Õ
µf̄i(QÕV

i,j + QÕA
i,j“

5)“µfj (3.1)

where the first term is the kinetic term for the new boson Z’, gZ
Õ is the coupling of this new

boson to the fermions, fi is a particular fermion and we’re considering that there might be
either vector or axial contributions. A correct combination of the charges QÕV,A

ij guarantees
that the new symmetry isn’t anomalous, and from a model building perspective there is
also the possibility to add new heavy fermionic fields not charged under the Standard
Model group to guarantee the cancellations (though special care must still be taken with
the gravity-gauge anomaly).

The previous example is something very simple and generic, which we could further
specialize or expand by charging the new mediator under the Standard Model symmetries
and/or introducing new charged fermions. We shall not go into these possibilities for now,
and will address this possible need later, going back to the convenience of the E�ective
Field Theory formalism briefly discussed in Sec. 2.3.

We shall further restrict this broad category by making very few assumptions
about the nature of this new mediator:
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• First, it is not charged under any Standard Model symmetry;

• Second, it is massive;

• Third, it should couple to both quarks and neutrinos.

This first two conditions will define a class of U(1) extensions which can be called
“Z’ models”, due to its characteristics mimicking the usual Z boson in the electroweak
sector as a neutral, massive mediator. If, furthermore, it also exhibits kinetic mixing with
the Standard Model photon, it is instead called “Dark Photon”. The third point guarantees
that e�ects of this extension can interfere with the Standard Model processes relevant to
CE‹NS.

Closing our definition, while we do not make any assumptions on the mass of said
mediator a priori, should it be lighter than the electroweak scale, we shall denominate
the corresponding model as a “Light Z’ Model”[60]. We will investigate the implications
of that in the next section.

3.2 Neutrino Non-Standard Interactions
Closely related to the topic of Standard Model extension involving neutrinos, is the

notion of Non-Standard Interactions [60]. As we’ve seen in chapter 2, we could apply an
E�ective Theory approach to parametrize the contribution of the heavy Z-boson inside
the couplings of the theory. We can do the same for other new particles which might
mediate a neutral current process, yielding an e�ective lagrangian in the similar in form
as eq. (2.16). They are usually written as

≠LNSI = 2
Ô

2GF

ÿ

i,j

(‹̄i“
µPL‹j)

ÿ

f,P

‘i,j
f,P f̄“µPf (3.2)

where i,j are flavor indices and f is a Standard Model fermion, with P being either PR

or PL. Each of the terms ‘ij
f,P is called Non-Standard Interaction (NSI) Parameter, and

just like with the case of the Fermi-like theory, they are e�ective couplings encoding the
contribution of new mediator states in the neutral current process of the Standard Model.
For convenience, since we’ll want to compare their contribution with the one from the
Standard Model process, they are usually parametrized using the same scale GF .

Another important feature of this framework is that it can even admit non-diagonal
interactions, such that there is flavor mixing among other e�ects. We’ll focus, however, on
the case where i = j, such that there is no neutrino flavor mixing. These NSI parameters
introduce a correction to the Standard Model amplitude, which can be included quite
easily in our Fermi-like theory example. Before, it’s convenient to rewrite eq. (3.2) in a
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vector-axial form, since we already know the axial contribution can be neglected in the
typical CE‹NS scale (see the discussion following eq. (2.21)). We obtain:

≠LNSI = 2
Ô

2GF

ÿ

i,j

(‹̄i“
µPL‹j)

ÿ

f,P

‘i,j
f,P f̄“µPf

= 2
Ô

2GF

ÿ

i,j

(‹̄i“
µPL‹j)

ÿ

f

Ë
‘i,j

f,Lf̄“µPLf + ‘i,j
f,Rf̄“µPRf

È

=
Ô

2GF

ÿ

i,j

(‹̄i“
µPL‹j)

ÿ

f

Ë
‘i,j

f,Lf̄“µ(1 ≠ “5)f + ‘i,j
f,Rf̄“µ(1 + “5)f

È

=
Ô

2GF

ÿ

i,j

(‹̄i“
µPL‹j)

ÿ

f

Ë
(‘i,j

f,L + ‘i,j
f,R)f̄“µf ≠ (‘i,j

f,L ≠ ‘i,j
f,R)f̄“µ“5f

È

©
Ô

2GF

ÿ

i,j

(‹̄i“
µPL‹j)

ÿ

f

Ë
‘i,j

f,V f̄“µf ≠ ‘i,j
f,Af̄“µ“5f

È

(3.3)

with the definitions

‘ij
f,V/A © ‘i,j

f,L ± ‘i,j
f,R. (3.4)

Now, we can compute the amplitude, following exactly the same diagram from
Figure 7 and taking i = j for the parameters above, but adding both the Standard Model
and NSI amplitudes; we obtain, assuming no o�-diagonal terms:

A = ASM + ANSI

= iGF

Ô
2ū(pÕ)“µPLu(p)

e
T Õ

--- N̄“µQV
NN |T Í

+ iGF

Ô
2ū(pÕ)“µPLu(p)‘q,V

e
T Õ

--- N̄“µN |T Í .

(3.5)

The nuclear matrix element will follow the same derivation as in Sec. 2.2, and we’ll assume
a short-hand notation again, yielding:

A = iGF

Ô
2Lµ

ÿ

N

1
QV

N + ‘N,V

2
Hµ, (3.6)

where we defined ‘p,V © 2‘u,V + ‘d,V and ‘n,V © ‘u,V + 2‘d,V for protons and neutrons,
respectively. The rest of the calculation follows completely analogously, by defining Q̃V

N ©
QV

N + ‘N,V and replacing the charges in eq. (2.54). Explicitly,

d‡

dER
= G2

F mT

fi

3
1 ≠ mT ER

2E2

4 Ë
ZQpFp(q) + (A ≠ Z)QnFn(q)

È2
,

Qn = ≠1
2 + ‘u,V + 2‘d,V ,

Qp = 1
2 ≠ 2 sin2 ◊W + 2‘u,V + ‘d,V .

(3.7)

The impact of the contributions depends on the size of the NSI parameters with
respect to the Standard Model charges, but we could expect in particular a sizeable e�ect
for proton contribution, since it is ordinarily suppressed due to the value of the mixing
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angle. In fact, many prior works have already applied COHERENT experiment datasets to
constrain a number of these parameters to good precision [44, 60]. There is an important
caveat though, in which this description, as essentially an EFT parametrization, is only
valid up to the scale of which the typical energy of the process is small compared to the
mass of the mediator involved in the UV description of the four-fermion operator.

This kind of scenario can correspond to the class of Light Z’ mediators. If their
mass is below the GeV scale, we can expect their dynamics to play a role and the NSI
parametrization has to be modified. For a binned experiment, spread over a range of
measured recoil energies, this can be particularly useful to break degeneracies between
models and parameters - one can look for some characteristic dependence of the exchanged
momentum carried by the mediator, which is directly related to the recoil energy as
described in Sec. 2.1. Furthermore, as we’ll see in the next sections, one can expect an
enhancement of the new charge under lower exchanged momentum [60]. In order to analyze
this scenario, and define our models of interest, we shall briefly introduce the concept of
Simplified Models.

3.3 Simplified Model Approach
The aforementioned consideration about the range of validity of the parametriza-

tion could lead one to decide to instead use the “full” theory represented by the Lagrangian
in eq. (3.1). However, one possible uncomfortable question to arise from that "simple" def-
inition is: where would the mass of the new boson come from? The definition mentioned
above does not contain a mass term for the Z’, and were it to follow the Standard Model
scenario of Higgs Mechanism, one would need to introduce all sorts of new fields to pro-
duce either another Spontaneous Symmetry Breaking beyond the Electroweak one, or
somehow justify this new boson evading detection while still gaining mass via its interac-
tion with the Standard Model Higgs. In fact, many models containing Z’ extensions are
usually a byproduct of the breaking of a bigger group that includes the Standard Model’s
SU(3)C ◊ SU(2)L ◊ U(1)Y as a subgroup, perhaps introducing new scalars and fermions.

Since our objective is to study the influence of this model in CE‹NS experiments,
it still makes sense to invoke the separation of scales and work in an e�ective field theory
scenario: fields with masses above the momentum scale of the process we are working with
will never be able to be produced on-shell, and thus their propagators will be suppressed
at tree-level by a power of their mass. This also leads, as we discussed in Sec. 2.3, to some
advantage from a phenomenological perspective, as multiple UV-complete theories can
lead to the same low-energy behavior, and thus properly constraining the e�ective theory
can help discard a larger number of theories at once. The question then is whether there
is a way to reconcile this approach with the knowledge the mediator mass might be too
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low to consider within the range of validity.

The solution is to incorporate another simple assumption: the UV theory itself
might have some degree of separation of scales, such that while the mediator may be
light, new fields such as extra scalars, right handed neutrinos and others are still very
heavy. In particular, of the order of the Standard Model Z’s mass or higher. This will
allow for a middle way, such that we can integrate out most of the fields, which have only
a limited contribution. At the same time, we won’t have to worry about origin of the mass
of the mediator and other important but not relevant questions to the scenario at hand,
while also keeping the dynamics of the light mediator. This is defined as a Simplified
Model.

Summarizing, we still wish to apply the EFT parametrization to study the con-
sequences of the new extension. Care must be taken, however, with the U(1) mediator
involved. Should its mass be of the order of the CE‹NS scale, neglecting the momentum
part of its propagator could yield misleading results; since we are not making assumptions
on what is its mass, we shall keep it in the low energy theory instead of integrating it out
on some limit of the expansion parameter. At the same time, we will assume right-handed
neutrinos, and other fermions included in the UV theory for consistency via anomaly
cancellations, etc, to be su�ciently heavy to not interfere with our calculations at the
CE‹NS scale.

3.4 Models of Interest and Revised Cross Section
Having made all the relevant definitions, we can now write an e�ective Lagrangian

for the new interaction, containing the full propagator of the Z’, and match it to the ampli-
tude computed before in this chapter to check how this will modify the NSI parametriza-
tion implied and match the charge definitions in the low energy model. This interaction
term in this new Lagrangian reads:

Lint Z’ = gZ
ÕZ Õ

µ

ÿ

f

QÕ
f f̄“µf (3.8)

where f are SM fermions, and we are assuming no tree-level mixing with the SM bosons.
Again, given the Standard Model computation, this time we are not including axial con-
tributions, since fundamentally they won’t benefit from the same enhancement as a vector
term.

The underlying process follows exactly the same diagram pictured previously in
Figure 8, replacing Z by Z’ and the relevant coupling/charges. The resulting amplitude
then reads

AZ’ = ≠ig2
Z

ÕQÕ
‹ ū(pÕ)“µPLu(p)

gµ‹ ≠ qµq‹

m
2
Z

Õ

q2 ≠ m2
Z

Õ

e
T Õ

--- QÕ
q q̄“‹q |T Í . (3.9)
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Since pÕ
µ, pµ, qµ = pÕ

µ ≠pµ are on-shell momenta, the Ward Identity guarantees that
qµLµ = 0, and thus we can safely drop the second term in the propagator without further
consideration.

Using the usual shorthand notation from the previous examples, we may rewrite
the amplitude as

AZ’ = ≠i
ÿ

N,q

g2
Z

ÕQÕ
‹Lµ gµ‹

q2 ≠ m2
Z

Õ
QÕ

qH
‹ (3.10)

and, scaling the charges by the Fermi constant:

AZ’ = iGF

Ô
2Lµ

ÿ

N,q

A
≠g2

Z
ÕQÕ

‹QÕ
q

GF

Ô
2(q2 ≠ m2

Z
Õ)

B

Hµ. (3.11)

Comparing with eq. (3.6), this is exactly the same amplitude with the identification

‘V,q =
≠g2

Z
ÕQÕ

‹QÕ
q

GF

Ô
2(q2 ≠ m2

Z
Õ)

ƒ
g2

Z
ÕQÕ

‹QÕ
q

GF

Ô
2(|q̨|2 + m2

Z
Õ)

, (3.12)

where we used that q2 ƒ ≠|q̨|2 in the last equality.

After fixing the charges to define a particular model, this expression has 2 free
parameters: the new coupling gZ

Õ and the mass of the new mediator mZ
Õ . Our objective

will be to try to constrain the allowed values for these using experiments.

Based on this parametrization, we’ll define two models of interest:

• Universal Z’: The new gauge boson couples to all fermions with the same strength,
ie. QÕ

q = QÕ
‹ = 1 for all quarks and neutrino species. The Standard Model charges

are modified as

QV
N æ

A

QV
N +

3g2
Z

ÕÔ
2GF (|q̨|2 + m2

Z
Õ)

B

(3.13)

• Z Õ
B≠L: The new gauge boson couples to the (anomaly-free) current of the gauged

U(1)B≠L group, where B and L are respectively the Baryon and Lepton numbers.
As such, it corresponds to QÕ

q = 1/3 and QÕ
‹ = ≠1. The Standard Model charges

are modified as

QV
N æ

A

QV
N ≠

g2
Z

ÕÔ
2GF (|q̨|2 + m2

Z
Õ)

B

(3.14)

However, we shall also include an extra model of interest with a slightly di�erent
structure, in which it does not directly obeys the third condition we defined previously
for Z’ models, namely having non-zero coupling to quarks:
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Figure 10 – Diagram for the loop-induced mixing between Z’ and photon, giving rise to
the proton neutral current charge modification in the Z Õ

µ≠· model.

• Z Õ
µ≠· : In this case, the new gauge boson couples to the gauged U(1)Lµ≠L· current,

with QÕ
q = QÕ

‹e
= 0 and QÕ

‹µ
= 1 = ≠QÕ

‹·
. However, in this case, while one does

not get a tree-level interaction with the quark sector, there is still an e�ective one.
Instead of a tree-level exchange, here the process occurs via kinetic mixing between
the photon and the Z’ via a muon and tau loop, illustrated by the diagram in Figure
10. The quark-level couplings are modified as [61]:

‘q,V = +
2 –EM g2

Z
Õ QqÔ

2fi GF

1
|q̨|2 + m2

Z
Õ

2
⁄ 1

0
dx x(1 ≠ x) log

C
m2

· + |q̨|2x(1 ≠ x)
m2

µ + |q̨|2x(1 ≠ x)

D

, (3.15)

which can be approximated in the limit of m· , mµ ∫ |q̨| to

‘q,V = +
–EM g2

Z
Õ Qq

3
Ô

2fi GF

1
|q̨|2 + m2

Z
Õ

2 log
A

m2
·

m2
µ

B

, (3.16)

where Qq is the quarks’ electric charge and –EM is the usual electromagnetic fine-
structure constant. While the tau mass is generally much above the typical CE‹NS
scale, the same is not necessarily true for the muon mass. Still, as shown in [61],
the full computation yields a negligible deviation for the relevant phase space. We
shall include it fully when dealing with the ‹BDX-DRIFT experiment in Part II to
be careful, due to the higher energy of the incoming flux going beyond the region
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considered in the reference, although the e�ect is also expected to be overall negli-
gible for the sensitivity analysis that will follow. In conclusion, the Standard Model
charges are modified as

QV
p æ

C

QV
p + –EMgZ

Õ

3
Ô

2fiGF (|q̨|2 + m2
Z

Õ)
log

A
m2

·

m2
µ

BD

, (3.17)

QV
n æ QV

n . (3.18)

Since the coupling occurs via a mixing with the photon, only the proton receives a
contribution, since the neutron has no net electric charge to couple to at this scale.

Following what was mentioned in the end of Sec. 3.1, all of those modifications
include a term which grows as |q|2 æ 0, thus naively enhancing the discrepancy to the
Standard Model at lower exchanged momentum, if mZ

Õ is of the order or below the typical
scale of the process. This justifies CE‹NS as a very powerful tool to work with this sector
of the landscape of light Z’ models.

With the models of interest and their relevant parameters defined, the last piece
of information we need in order to start analyzing the viability of these models and their
sensitivity in future experiments is to define the testing framework itself. There must be a
formalism in place to relate the underlying parameters, to the experimental datasets and
infer the reliability of the results.
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4 Hypothesis Testing and Wilks’ Theorem

The formalism derived in the previous chapters can be readily applied to exper-
iments to obtain predictions for the number of expected CE‹NS events. Although, as
mentioned, most of the framework was put in place in the 70’s, the first detection of this
phenomena has only recently been made, by the COHERENT Collaboration [47]. There
are currently, however, many di�erent proposals for other CE‹NS-focused experiments,
foreboding the doors opening for a CE‹NS "precision era" now that the discovery has
been successfully achieved.

In this chapter, we shall proceed by first defining the general framework for hypoth-
esis tests, which will be crucial later in order to probe the sensitivity of these experimental
proposals to the parameters of our Light Z’ Models of interest, defined in Sec 3.4.

4.1 Definitions and Formalism - Brief overview

Statistical Inference

Due to the intrinsic probabilistic nature of scattering events, one needs to define
a proper way to connect an observed dataset to the underlying parameters of the model
being tested, for which one needs the tools of Statistical Inference. That need can be
promptly understood with very basic examples. The guiding principle is the same as for
a simple coin-toss experiment: while unlikely, there is a non-zero chance of a fair coin to
land on heads consecutively for any finite number of times. Just as well, were a coin-toss
dataset to exhibit this behavior, it would still not be possible to discard it being fair with
absolute certainty.

The role of statistical inference will be to define a systematic approach to use the
available data to ascertain the relative likelihood of distinct hypotheses about the under-
lying distribution - after “n” consecutive heads results, we’d like to have a quantifiable
way to express that the coin being fixed seems more likely than it being fair, and exactly
how much more likely it is. While for a generic case it may be impossible to reach absolute
certainty between two hypothesis (as one would have, after 10 tosses as heads one cannot
guarantee the 11th wouldn’t be tails without knowing the actual state of the coin), it is
common to elect a threshold with which to claim exactly whether a hypothesis can be
confirmed or excluded. For a fair coin, the probability of getting 100 consecutive heads
is 1

2100 < 10≠30, less than one in one nonillion, so intuitively one would never expect to
reproduce such an unlikely event were this underlying hypothesis true, and for all e�ects
could discard it without feeling anxious about making a mistake. In practice, thresholds
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for Particle Physics discoveries are set at 5‡, whose precise meaning will be described
later in this chapter.

Another feature illustrated in a coin-toss example is the dependence on the size
of the dataset. As more tests are made, the cumulative outcomes that deviate from the
mean become rarer, and in particular, there are fewer of them the farther they are from
the true mean, in some sense. While there are subtleties than need to be addressed that
go beyond this simple example, it’s possible to accurately define this apparent empirical
phenomenon imposing some simple assumptions on the underlying distribution.

For an experiment with a given set of outcomes with finite mean and finite non-
zero variance, the probability of choosing a cumulative outcome of n samples such that
its sample mean is within distance ‘ of the true mean tends to 1 as the n goes to infinity.
This is known as the (Weak) Law of Large Numbers. Formally, if X denotes a random
variable with n independently identically distributed samples X1, X2, ..., Xn, with mean
E(X) = µ and variance ‡2, then

lim
næŒ

Pr
1
|X̄n ≠ µ| < ‘

2
= 1, ’‘ > 0 (4.1)

where X̄n = 1
n

qn
i=1 Xi denotes the sample average. In other words, the sample average

converges in probability towards the expected value.

We can also invoke Chebyshev’s Inequality to further bound how well the
approximation may hold given that our sample has an underlying distribution with finite
mean and finite non-zero variance; specifically, no more than 1

k
2 samples can assume values

k standard deviations or more away from the mean. Or,

Pr(|X ≠ µ| Ø k‡) Æ 1
k2 , (4.2)

with X being a random variable, µ = E(X) the expected value, ‡ its standard deviation
and k any real positive number.

We shall not demonstrate these theorems, as it is outside of the scope of this
thesis, but our main takeaway involves the utility of what they can say about the goal of
quantifying hypothesis tests. Together, they inform us that by taking the sample average
from an experimental set of obtained results we should approach the true expected value.
Furthermore, since the sample average itself is a random variable, we can systematically
compare the probability of obtaining the result among di�erent hypothesis about the
mean value and variance.

That is to say, we can properly formalize the notion of likelihood: using a particular
set Á of parameters yields an expected value µ(Á) and variance ‡(Á)2 to be compared to
the observed sample mean X̄n, which defines a k(Á), linked to the probability of observing
an outcome at least as extreme (ie. far from the mean µ). This set of parameters (or
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equivalently, the hypothesis that states “Á is the value of the parameters of the model M”)
will then be more likely than another set of parameters ÁÕ if their associated k-value is
smaller, ie. there’s a larger probability of observing that set of results given the expected
value computed from the theory for that set of parameters. For an independently and
identically distributed random variable X, with a sample {xn} of outcomes, a likelihood
function, therefore, will be a function

L(Á) = f({xn}|Á) (4.3)

describing the probability, within a given set of data, for it to have been generated by
an underlying distribution with parameters Á. It’s important to emphasize that this is a
function of the parameters, not of the data set, which is not a variable.

While particularly illuminating to the reasoning and usefulness of inference tools,
in practice we won’t be using the bounds given by equation (4.2), in favor of stronger
ones, and the procedure outlined will also be subtly di�erent due to how we’ll approach
error control. We’ll go back to our coin-toss example for a moment to illustrate this.

Definitions - Hypothesis and Errors

Let us perform a certain repetition of tosses in order to infer how likely it is that a
coin is fair. We shall call “the coin is fair”, or equivalently, “The probability p of getting
heads is 0.5” as the Null-hypothesis, often denoted as H0. The assertion p = 0.1 will be
our Alternative hypothesis H1. The objective of the test will be to determine whether
or not the outcome set rejects the Null-hypothesis within some predetermined threshold
of likelihood in favor of our Alternative hypothesis. As mentioned before, for a general
scenario one can never make the claim that “H0 is false” with absolute certainty, and
analogously, that “H1 is true”, so even setting stringent thresholds there is always the
possibility of errors. We shall classify them into two types:

• Type I Error (false-positive): This type of error occurs when a true Null-hypothesis
ends up rejected. In the coin-toss example, this could happen by getting su�ciently
more tails than heads within the sample, leading to the incorrect conclusion that
the coin wasn’t fair. It is closely associated with the significance level –, which is
the threshold probability for observing a result at least as extreme for the sampling
given that the Null-hypohesis is true.

• Type II Error (false-negative): This type of error occurs when a false Null-hypothesis
cannot be rejected. For instance, if the coin-toss sample resulted in a proportion of
heads and tails between the one from the null and alternate hypothesis, in such a
way that the tolerance threshold wasn’t enough to favor the Alternative hypothesis.
The susceptibility to this type of error is said to determine the Power of a test, and it
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can be reduced by larger sample sizes or less stringent thresholds for Null-hypothesis
rejection.

In general, for the purposes of Particle Physics experiments, we’d like to minimize
in particular the Type I errors, so as to avoid getting false experimental leads to direct
theoretical developments in the wrong direction, leading to very stringent bounds for the
significance –. Our focus, however, will be subtly di�erent. We will study experimental
proposals, to measure how much of the parameter space available for our models of interest
can be excluded at a given significance if the Standard Model is the correct underlying
theory. Therefore, for each point in the space of parameters, we shall conduct a hypothesis
test with “Model M with input parameters Á” as the Null-hypothesis, against the Standard
Model as the Alternative hypothesis. For that purpose, we will define a test statistic, whose
distribution will allow us to properly define the significance of our test.

Test Statistic

Following [62], we shall define the test statistic following a Poisson likelihood. That
is appropriate given that, following section 2.4, what we will ultimately be measuring in
the experiments is the number of events observed within a limited interval of time. We’ll
start by defining the Poisson Distribution: A random variable X is said to be Poisson-
distributed, with parameter ⁄ > 0, if for each observed number of events k it has a
probability mass function fPoiss = Pr(X = k) respecting

fPoiss(k, ⁄) = Pr(X = k) = ⁄ke≠⁄

k! . (4.4)

Its expected value and variance are both equal to ⁄, which is the expected number of
events in a particular period. One can also substitute ⁄ = rt to instead ask about the rate
r in which an event happens within a time interval t. This type of distribution is valid
for a model based on the assumption that events are occurring independently but at an
average rate. This fits with our scenario of measuring the number of CE‹NS events in a
detector over a specified time frame.

As stated previously, we can define a likelihood function as the probability of
observing a determined set of outcomes for an identically and independently distributed
random variable, if for the underlying distribution we assume a set Á of parameters; for a
Poisson distribution, we then have:

L(Á|x1, x2, ..., xn) = Pr(X = x1|Á) ◊ Pr(X = x2|Á) ◊ ... Pr(X = xn|Á) (4.5)

but each of the factors in the right hand side are just the Poisson probability mass function,
so

L(Á|x1, x2, ..., xn) =
nŸ

i=1
fPoiss(xi, ⁄) =

nŸ

i=1

⁄xie≠⁄

xi!
= e≠n⁄ ⁄

qn

i=1 xi

rn
i=1 xi!

. (4.6)
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For reasons we will show in the next sections, we will prefer to work with the
Log-Likelihood instead:

≠2 log L(Á|x1, x2, ..., xn) = 2
C

n⁄ ≠
A

nÿ

i=1
xi

B

log ⁄ + log
A

nŸ

i=1
xi

BD

. (4.7)

So, now we have given one step ahead: we have found a way to quantify how
likely it is to have some underlying parameter choice given a set of outcomes from our
experiment: it is expressed by how big is the value of the respective likelihood function
(or reciprocally how small, if working with ≠2 log(L)). Furthermore, we can directly com-
pare two hypothesis using it. Let P be the phase space of parameters for a particular
model, with P0 µ P being the subset of this space containing the values satisfying a
Null-hypothesis H0 and P1 µ P/P0 the one containing values satisfying the Alternative
hypothesis. Then, we can define the Likelihood-ratio � between them as

� =
maxÁ0œP0 L(Á0)
maxÁ1œP1 L(Á1)

, (4.8)

with the test rejecting the Null-hypothesis at significance – if � > c(–), though we still
have to introduce how to define this number c. Notice that we can also take the logarithm
of the likelihood ratio:

≠2 log � = ≠2 log
A

maxÁ0œP0 L(Á0)
maxÁ1œP1 L(Á1)

B

= ≠2 log
3

max
Á0œP0

L(Á0)
4

+ 2 log
3

max
Á1œP1

L(Á1)
4

= min
Á0œP0

(≠2 log L(Á0)) ≠ min
Á1œP1

(≠2 log L(Á1)) (4.9)

which, for a Poisson-distributed experiment, will reduce to

≠2 log � = 2
C

n⁄0 ≠
A

nÿ

i=1
xi

B

log
A

⁄0

⁄1

B

≠ n⁄1

D

= 2n

C

⁄0 ≠ x̄ log
A

⁄0

⁄1

B

≠ ⁄1

D

, (4.10)

where x̄ is the sample average.

Wilks’ Theorem

Finally, all that remains is finding a way to decide which threshold values are
appropriate for rejecting a hypothesis for each given significance requirement (which, as
defined above, is the probability of committing a type I error, ie. rejecting the Null-
hypothesis even when it is true).

While there are multiple approaches to this problem, roughly grouped into “Bayesian”
and “Frequentist” interpretations, we shall focus on the later given its prevalence in most
of the literature [63]. Discussions about the merits of each can go into deeper philosophical
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considerations about the inherent nature of probability, and thus are outside the scope of
this work.

The test statistic was defined to formalize the notion of how extreme (or unlikely)
one given set of outcomes can be for a set of parameters assumed by a hypothesis. Un-
surprisingly, one of its factors depends on the sample average observed. However, were
the experiment to be repeated a number of times, each could have sampled di�erent val-
ues, even if they all follow the same underlying distribution. Thus, the test statistic itself
should follow a related distribution. Indeed, in a Frequentist interpretation, we can define
Confidence Levels for a given hypothesis test as intervals in the phase space of a parameter
of interest in which the true value of that parameter under the Null-hypothesis is covered
(1 ≠ –) of the time when reproducing experiments. It is the reciprocal of the significance.
If we can determine the distribution of the test statistic, setting a confidence level (or
equivalently, significance) means simply computing the cumulative distribution function
until a tabulated threshold.

On first view, it seems we have looped back into the same problem, since we do not
know a priori the distribution of the test statistic. One choice of approach is to populate
the outcome space by simulating pseudo-experiments, using Monte Carlo methods [63];
thus, choosing a parameter of interest and marginalizing over the rest yields a distribution
of the test statistic over the values of the former, and the cumulative distribution can be
sampled directly to determine the appropriate confidence interval. This is at the core
of frequentist Feldman-Cousins methods. However, such a procedure can be extremely
computationally intensive, specially when there are multiple parameters to consider.

Fortunately, under certain conditions, one does not need to rely on Monte Carlo due
to the test statistic actually following asymptotically a known distribution, independent of
the actual data. Wilks’ Theorem states that, for a random variable distributed as some
function f(x|Á), which admits a maximum likelihood estimator Á̄ under some regularity
conditions (formally expressed in [64]), the test statistic ≠2 log � follows asymptotically a
‰2

k distribution under the Null-hypothesis, where k = dim(‘1)≠dim(‘0) is the di�erence in
the number of free parameters between the Alternate hypothesis and the Null-hypothesis.
Specifically, it follows a ‰2

k distribution up to factors of order O( 1Ô
n), where n is the

number of events. The proof of this theorem is outside of our scope, and can be found in
[64].

Furthermore, following [63], there’s a convenient way to express the Confidence
Level Z of the test, by using units of standard deviation for the cumulative of a normal
distribution; as a consequence of Wilks’ Theorem it can be directly related to the test
statistic as

Z(Á) =
Ò

≠2 log �. (4.11)
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The popular “5‡ Limit” for a discovery in Particle Physics in practice means a confidence
level of 99.99994%, or correspondingly, an – of 0.00006.

Experimental and Systematic Uncertainties

While we have successfully described a framework for hypothesis testing, so far
we have not included anything concerning sources of errors in the measures themselves.
Back to the example of the coin, we’re now dealing with a case where there exists some
inherent uncertainty about the state we’re measuring. Maybe we’re observing the coin
being thrown in the far distance, such that heads and tails can only be distinguished
with some non-perfect degree of certainty. This should also impact our description of the
likelihood for the outcomes dataset in some way.

This will be included in our framework with the nuisance parameters, which are
a set of parameters which are not related to the quantity of interest in the model we
are testing, but that can impact the result. The common way to deal with those is to
profile over them, choosing a combination to extremize the likelihood function with a
given weight. Specifically, we shall make use of the Pull Method:

Let t be some ‰2-distributed test statistic, in the absence of experimental/ sys-
tematic uncertainties, and ›̨ a set of nuisance parameters for the underlying distribution.
Assuming that the errors related to these can be approximated by a normal distribution,
with variance ‡̨2 for each corresponding nuisance parameter, we can define a new test
statistic t̃ as

t̃ = t(›̨) +
ÿ

i

A
›i ≠ 1

‡i

B2

. (4.12)

Essentially, we’re setting a scale for deviations around the mean by the variance related to
the nuisance parameters, and then asking the same question that motivated our endeavor
from the beginning: “how likely is it to observe this data distribution for some choice
of parameters?”, and then combining it with the extremality of the prediction versus
experimental outcomes.

Illustratively, we can think about a test of event rates in the Standard Model versus
an experimental outcome. Assume there was some 10% overshooting of the theoretical
prediction with respect to the observed number of events. However, the experiment has
some uncertainties with measuring the number of events, because of flux normalizations,
background considerations, etc. If the uncertainty is small, in this case which means
reasonably below 10%, this kind of overshooting would be very unlikely to happen just
due to detector e�ects, and thus the event dataset would be significant. On the other hand,
if the uncertainty is large, this kind of deviation would be common, and the significance
is reduced.
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In the cases we are going to analyze, we’ll be working mainly with two nuisance
parameters: the normalization of the number of signal (ie. CE‹NS) events (›S) and the
normalization of background events (›B). We’ll properly define them when proceeding
with the sensitivity analysis in Chapter 8.

4.2 Testing Algorithm
With the formalism for the hypothesis test defined in the last section, we shall now

outline exactly how this will be performed in practice for our context of future CE‹NS
experiments. We shall proceed by steps, in a systematic way.

Our objective is to derive a profile separating the allowed and excluded region over
the space of our model’s parameters, which in this case are (gZ

Õ , mZ
Õ), at a fixed confidence

level. In order to facilitate comparison with other bounds found in the literature, we
will specify a 90% Confidence Level line as our target sensitivity, corresponding to a
significance of 1.645‡. Given an experimental proposal E, and a model of interest Z Õ

i, we
shall test the sensitivity of E with respect to Z Õ

i by following these steps:

1. Set a mass mZ
Õ = M for the new mediator;

2. Compute the CE‹NS cross section for the Standard Model, and for the model Z Õ
i;

3. Using the specifications of the experiment E, compute the event rate for the Stan-
dard Model and for the model Z Õ

i, following eq. (2.56), in each bin defined for E. We
shall call the former NSM,i and the later Ni(gZ

Õ , mZ
Õ = M);

4. Introduce systematic uncertainties via nuisance parameters ›S, for the overall nor-
malization of Ni, and ›B, for the number of background events NB,i, computed for
E.

5. Since there is no data set for a planned experiment, we shall assume that it will
follow the distribution implied by the Standard Model, in such a way that the sample
average in each bin will be exactly NSM,i + NB,i;

6. For the fixed value of mZ
Õ = M , compute the test statistic following eqs. (4.9)

and (4.10), assuming H0 fixes Á0 = (gZ
Õ = g, mZ

Õ = M, ›S, ›B) œ P0 and H1 fixes
Á1 = (gZ

Õ ”= g, mZ
Õ = M, ›S, ›B) œ P1 such that we have parameters :

‰2(gZ
Õ = g; mZ

Õ = M) =
ÿ

i

min
Á0œP0

(≠2 log Li(Á0)) ≠ min
Á1œP1

(≠2 log Li(Á1))

=
ÿ

i

min
(›S ,›B)

(≠2 log Li(Á0) ≠ min
(g

Z
Õ ,›S ,›B)

(≠2 log Li(Á1)) (4.13)

where Li is the Likelihood function for the i-th bin. But, following from the previous
point, if the expected dataset just follows the Standard Model prediction, it’s obvious
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to expect that the minimum of the likelihood is reached for gZ
Õ = 0, ›S = ›b = 1,

which is just the Standard Model result. Replacing accordingly:

‰2(gZ
Õ = g; mZ

Õ = M) =2 min
(›S ,›B)

ÿ

i

Ë
›SNi(gZ

Õ = g, mZ
Õ = M) + ›BNB,i

≠ (NSM,i + NB,i) log
A

›SNi(gZ
Õ = g, mZ

Õ = M) + ›BNB,i

NSM,i + NB,i

B

≠(NSM,i + NB,i)
È

+
A

1 ≠ ›S

‡S

B2

+
A

1 ≠ ›B

‡B

B2

.

(4.14)

7. Scan over allowed values for gZ
Õ , minimizing |‰2(g, M)≠ (1.645)2| over g ≠Z Õ to find

the 90% C.L. contours, and reject the interval where |‰2(g, M) ≠ (1.645)2| > 0;

8. Scan over allowed values for mZ
Õ , returning to step 1 with a di�erent choice for mZ

Õ .

The number of operations required is huge, and needs to be performed with the
help of a computer, but are much less intensive than associated Monte Carlo methods.
For this work, all steps have been implemented using Python and Wolfram Mathematica
for verification.
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Phenomenological Applications - CE‹NS
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5 Benchmark Case - CENNS-10 Detector

Throughout Part I, we have carefully derived the formalism to compute predictions
for CE‹NS experiments within the Standard Model and certain Z’ extensions of interest,
as well as introduced the framework with which to compare them to experimental data.
Before applying it blindly to future prospects, it is convenient to test how well it may
work for a well-studied benchmark case.

The COHERENT collaboration, at the time of this work, has announced three
results of CE‹NS measurements [47, 48, 65], consisting in the first observation of the
phenomena (2017) and a recent update on a Sodium-doped Cesium-Iodine scintillator
(2021), and another recent observation in a liquid Argon, single phase scintillator detector
(2020). We shall use the later as our example, due to the availability to good precision of
Argon-40 nuclear properties, the simplicity of dealing with a single type of target nucleus,
as well as having the advantage of an exact cancellation for the axial contribution for an
even-even nucleus. Its correspondent data release is available at [66].

Our goals for this chapter are the following: extract the necessary quantities for
the computation of the event rate via eq. (2.56) from the experiment’s definitions and
successfully compute the Standard Model event rate for the experiment following [44] and
[48]. We shall also compute the expected number of events for our models of interest,
described in 3.4. The corresponding sensitivity limits for this case will be presented later
in Chapter 8, for the compared analysis with future proposals.

5.1 Detector properties
The COHERENT COH-AR-10 detector, formerly known as CENNS-10, is a 10

L Liquid Argon scintillator-based detector localized in the Neutrino Alley of the SNS
facility, at the Oak Rigdge National Laboratory, Fermilab. We shall refer to the detector
exclusively as CENNS-10 henceforth, to match the presented references. In operation since
2015, it has reported the second observation of CE‹NS in 2020 [48]. Despite still su�ering
from large relative uncertainties from flux and quenching determination, it has achieved
over 3‡ significance in confirming CE‹NS.

Brief overview of scintillation in Liquid Argon

A schematic view of the detector is presented in Figure 11. Incoming neutrinos
produce a recoil event inside the fiducial volume, generating secondary scatters which
will deposit energy in the liquid and trigger the formation of excited Argon dimers (ex-
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Figure 11 – Schematic view of the CENNS-10 detector, including the fiducial LAr volume,
overall detector vessel, vacuum chamber and shielding. Source: [48]

cimers)[67]. These consist of essentially a Rydberg-like state of a positive Ar+
2 core with

a bound electron; depending on the combined spin of the system, the ground state of the
combination might lie in a singlet or triplet state, with mean lifetimes of 6ns and 1.5µs,
respectively. These excimers eventually decay back into two Argon atoms, emitting a pho-
ton in a characteristic 128nm wavelength (Vacuum Ultraviolet) as a result. The process
occurs via two pathways, illustrated in Figure 12, with di�erent yields for singlet and
triplet states. The first involves direct excitation of an Argon atom to form an excimer,
while the second relies on the recombination of a thermalized electron with an ionized
dimer.

The liquid Argon medium is very transparent to its own scintillation light, due to
the disparity between the typical separation scale in the liquid phase for free atoms and for
the dimers[67]. It also has a very consistent yield of around 40.000 photons/MeV, which
can propagate within the fiducial volume and reach the Photomultiplier Tubes (PMTs).
There, the light is converted to an electric signal waveform, that is then digitalized. To
maximize yield, the 128nm scintillation light is wavelength-shifted to a distribution peaked
at 420nm [48]. This setup provides a nominal threshold nuclear recoil energy at around
20 keV.

The biggest advantage of this type of setup in the context of CE‹NS is due to its
ability for Pulse-Shape Discrimination (PSD). One of the primary concerns for a coherent
scattering proposal is to be able to distinguish Nuclear Recoil (NR) from Electron Recoil
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Figure 12 – Representation of the two scintillation pathways of Argon; direct dimer excita-
tion (above) and ionized dimer formation and recombination (below). Source:
[68]

(ER) events. It has been verified [48] that each of these types of event populate singlet
and triplet states in di�erent proportions (namely, mostly singlet and mostly triplet,
respectively), and thus looking at the proportion of prompt yield over total yield it is
possible to discriminate between them by the resulting waveform. For CENNS-10, the
PSD parameter F90 is defined as the integrated amplitude of the measured waveform in a
90ns windows over the total amplitude for the 6µs waveform, roughly tracking the singlet
to triplet intensity ratio.

However, there are still other background concerns; the foremost is the incidence
of Beam-related Neutrons (BRN) in the active detector volume, since they can scatter
elastically o� Argon to mimic relevant Nuclear Recoil events. The mitigation of this kind
of background is implemented via shielding and by the choice of location [48]; an outer
lead shield is responsible for most of the mitigation, with an inner water shield stopping
Neutrino-induced Neutrons (NINs) which might be produced by the interaction of the
neutrino beam with the outer shield. Other steady state, beam-unrelated backgrounds
are studied by looking at the signals from o�-beam times.

Quenching

So far, we have described the ideal operation of the detector, in which a recoil event
occurs inside the active volume and the scintillation process starts with yield proportional
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to the deposited energy. However, there are competing processes within the medium which
do not generate scintillation light, with examples being energy dispersion through elastic
collisions without excitation of the Argon, dimer-splitting interactions with impurities, or
ionizating interactions between excited atoms. Together, these will constitute quenching
e�ects, such that the underlying energy recoil transferred to the medium will be di�erent
than the one measured by the light yield. To distinguish between them, henceforth the
former shall be discussed in units of keVnr, and the latter in keVee.

The conversion between the two units is called quenching factor, and its determi-
nation for CENNS-10 was done fitting global average values for Liquid Argon in the range
of 0-125 keVnr, and maintained constant and equal to the edge values outside this range.
The polynomial fit value and its uncertainties are [48]:

QF (keVee) = (0.246 ± 0.006) + ((7.8 ± 0.9) ◊ 10≠4 keVnr≠1)ER. (5.1)

Experimental bins and most measured quantities will be given in keVee, and thus it
will be crucial to properly account for the equivalent bin edges in keVnr using the quench-
ing factor: the later is the true exchanged energy in the primary scattering process, which
enters the calculations for the di�erential cross section. The threshold energy previously
mentioned, however, was already given in keVnr, since it corresponds to the underlying
energy required to trigger the detector at a benchmark e�ciency.

There are two choices of binning for CENNS-10 data, depending on background
mitigation strategies at the level of analysis; in particular, we’ll use Analysis A [48] due
to the release of its dataset by the collaboration [66]. It consists of 12 bins 10 keVee wide,
starting from zero, for a region of interest corresponding to the full acceptance region, even
though the nuclear recoil threshold (defined at 60% e�ciency) corresponds to roughly 4.2
keVee.

5.2 Neutrino Flux
With the detector settled, the next step involves determining the di�erential flux,

which will enter as a parameter in eq. (2.56). The CENNS-10 detector was positioned
within the Neutrino Alley at the SNS, illustrated in Figure 13, sharing a common neutrino
source with other COHERENT collaboration detectors.

The neutrino flux is produced via a fiDAR (Pion Decay-At-Rest) setup: a pulsed
proton beam from the SNS collides into a liquid-Hg target, producing neutrons and an
abundance of fi+ mesons, which lose energy inside the surrounding monolith and decay
at rest primarily to an anti-muon µ+ and a muon neutrino ‹µ. The anti-muon then later
decays at rest through a three-body decay to a positron e+, an electron neutrino ‹e and
a muon antineutrino ‹µ. A schematic view is shown in Figure 14.
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Figure 13 – The COHERENT Collaboration experiments in the Neutrino Alley, at the
SNS. Source: [47].

Figure 14 – Schematics of a pion decay at rest at the SNS. Source: [69].
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Looking at the kinematics of the first process, in the LAB frame (in which the
pion decays at rest):

fi+ æ µ+ + ‹µ =∆ (mfi, 0) = (Eµ
+ , p̨) + (E‹µ

, ≠p̨)
m‹¥0≠≠≠æ m2

fi = E2
µ

+ + 2Eµ
+E‹µ

+ E2
‹µ

= m2
µ

+ + p2 + 2p(mfi ≠ p) + p2

=∆ 2p(mfi) = m2
fi ≠ m2

µ =∆ E‹µ
= p = m2

fi ≠ m2
µ

2mfi
(5.2)

one can see that the flux due to the final state neutrino constitutes a monoenergetic peak,
sitting at E‹ = m

2
fi≠m

2
µ

2mfi
ƒ 29.8 MeV. For the subsequent muon decay, this is no longer the

case, as it decays through a three-body decay. In particular, if we consider the scenario
where the outgoing positron has maximum momentum in the anti-muon rest frame,

(mµ, 0) = (Ee, p̨) + (E‹ , p̨1) + (E‹̄ , p̨2) =∆ mµ ≠ Ee = E‹ + E‹̄

=∆ m2
µ = E2

e + 2Ee(E‹ + E‹̄) + (E‹ + E‹̄)2

m‹¥0≠≠≠æm2
µ = m2

e + p2 + 2Ee(mµ ≠ Ee) + p2

=∆ m2
µ ≠ m2

e = 2E2
e ≠ 2m2

e + 2Ee(mµ ≠ Ee) = 2Eemµ ≠ 2m2
e

)Ee = m2
µ + m2

e

2mµ

mµ∫me≠≠≠≠≠æ mµ

2 (5.3)

and for any other combination of momenta, the electron energy is smaller. Thus, we obtain
a wider spectrum for all of the products, capped at Ee, E‹̄µ

, E‹̄e
<

mµ

2 ƒ 52.8 MeV.

Due to the pulsing frequency of the SNS beam, compared to the muon lifetime, it is
actually possible to distinguish the neutrinos from the prompt pion decay from the delayed
muon decay, through their arrival time. This yields some degree of flavour distinction that
allows for an easier characterization of the flux. Following the analysis of the kinematics
of the processes, the total incoming neutrino flux is:

d„Tot

dE‹
= d„(‹µ)

dE‹
+ d„(‹e)

dE‹
+ d„(‹̄µ)

dE‹
, (5.4)

d„(‹µ)
dE‹

= ÷ ”

A
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B

, (5.5)
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where ÷ is an overall normalization component we’ll compute next, and with each com-
ponent plotted in Figure 15 for better visualization.

In this setup, the neutrinos produced via decay are isotropically distributed with
respect to the monolith target. Therefore, if r is the number of neutrinos of each flavor
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Figure 15 – Components of the fiDAR neutrino flux, given in arbitrary units. Source: [62].

produced by one proton-on-target, NP OT is the number of protons-on-target delivered for
a given integrated exposure from the SNS beam, and L is the distance from the monolith
to the detector, we can fix the normalization as

÷ = r
NP OT

4fiL2 . (5.8)

For the CENNS-10 detector, following [44], we take r = 0.09, NP OT = 13.7 ◊ 1022 and
L = 27.5m. Since we are normalizing the flux by the integrated exposure, formally we’re
now talking about the number of events during the data collecting run of the detector;
we’ll still refer to it as the event rate to keep the definitions and formalism consistent
throughout the text, but it should be understood as the number of events over the full
exposure period.

5.3 Event Rate computation
Recalling equation eq. (2.57), the following quantities were necessary for the com-

putation of the rate:

• Di�erential Flux: Provided in the last section by eq. (5.4) and the normalization
we just presented;

• Number of targets: With a 10 L argon active volume at very high (> 99%) purity,
the number of target nuclei can be easily computed as:

NT = NA
MDet

Mmolar
Ar

, (5.9)
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where NA is the Avogadro number, MDet = 24 kg is the detector’s mass, and
Mmolar

Ar = 39.96 g/mol is Argon-40’s molar mass;

• Recoil Energy bins: There are 12 bins, 10 keVee wide. Starting from the second
bin, the bin edges correspond, in keVnr, to:

{ER(i > 1)} = {36.4401, 67.0473, 93.959, 118.259, 145.56, 174.672,

203.785, 232.897, 262.009, 291.121, 320.233, 349.345}.

For the first bin (i = 1), its minimum energy depends on the threshold and accep-
tance function of the detector. In accordance to what was previously mentioned,
in the following analysis we’re including events below the nominal threshold at low
e�ciency, so that events are e�ectively cuto� at the acceptance limit of ER < 5
keVnr [44].

• Neutrino energy limits: The minimum incident neutrino energy for a given recoil
was already determined, via eq. (2.15), and it is naturally cuto� at Emax

‹ = mµ

2 , as
we’ve seen.

However, there is also another important factor to keep track of, which we have
already alluded to but shall now present explicitly:

• E�ciency: While we formally wrote eq. (2.57) from a purely theoretical descrip-
tion, an important factor when connecting to the expected observed dataset at the
experiment is the E�ciency. It corresponds to how e�ective the detector can be
in triggering to events occurring inside its acceptance region. This should be con-
voluted with the event rate in order to get a real prediction for the event number
observed. The e�ciency per half-bin Ae�(ER) is included in the data release for the
experiment [66].

Inserting everything in eq. (2.57), and including the e�ciency, the total rate is
therefore

R =
12ÿ

i=1

NAMDet

MAr

⁄ ER(i+1)

ER(i)
dER Ae�(ER)

⁄ mµ/2
Ô

mT ER/2
dE‹

ÿ

‹={‹µ,‹e,‹̄µ}

d‡(T, ‹)
dER

d„(‹)
dE‹

. (5.10)

The cross section is computed via eq. (2.31), and we used two di�erent choices for
the Form Factor: one calculation used the Helm parametrization described in eq. (1.15),
while the other used the form factor described in [42], calculated from first principles
following the discussion in 1.2, which includes semi-coherent responses as well. We have
determined that the choice is completely negligible, accounting for a sub-% e�ect on the
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Figure 16 – Expected number of events for the models of interest compared to the Stan-
dard Model. Only the first 6 bins out of 12are shown, with the remaining
having a total 0 of expected events.

event rate per bin, at the relevant energies for CENNS-10. The resulting predicted event
rates were:

Ri = {84.21, 35.55, 9.07, 2.16, 0.32, 0., 0., 0., 0., 0., 0., 0.} (5.11)

with total R = 131.32, all in good agreement with [44, 56, 66]. Thus, we have success-
fully reproduced the CENNS-10 prediction for the Standard Model from the formalism
constructed in Part I.

Computations for the models of interest follow the exact same formula, replacing
the Standard Model di�erential cross section to the one corrected by the contribution of
the Z’ boson. The results are presented in Figure 16, and also agree with [56].

With the benchmark case working properly, in the next chapters we’ll use the
formalism to compute predictions for some experimental proposals of interest, justifying
why they were chosen, before a final comparative analysis with COHERENT’s sensitivity
results.
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6 Experimental Proposal - ‹BDX-DRIFT

The main challenge for CE‹NS experiments is twofold: one needs to get enough
sensitivity to detect tiny recoil energies of the order of tens of keVs, while simultaneously
being able to exclude the numerous background brought about by hadronic and electronic
sources triggering on such a low threshold. This is also the case for Dark Matter direct
detection experiments, leading to a large integration between the fields from the exper-
imental point of view. With increasing worries about the financial and footprint burden
of building new detectors and testing new techonology, the act of repurposing decommis-
sioned detectors is a natural approach. The fundamental question, of course, is whether
it is possible to obtain the necessary data from this repurposed technology, and how it
compares to current dedicated detectors. In this context, we present and analyze the first
experimental proposal of interest, ‹BDX-DRIFT [70], based on a Dark Matter detector
concept.

6.1 Detector Properties
The ‹BDX-DRIFT is based on the Beam Dump eXperiment - Directional Recoil

Identification From Tracks (BDX-DRIFT), a long-researched experimental proposal con-
sisting of the employment of negative ion drift Time Projection Chambers (TPCs) to
achieve directional resolution of low threshold recoil events [71]. Although initially con-
ceived as a Dark Matter detector, the commissioning of the DUNE project [72] led to a
recent proposal [70] to repurpose its technology as a CE‹NS experiment, to be placed in
the planned Near Detector Facility of the DUNE complex, at Fermilab.

A brief overview of DRIFT detectors

A BDX-DRIFT detector consists of a collection of 1m ◊ 1m ◊ 1m box units
placed behind a beam dump. In the configuration discussed in Ref. [73], each detector
unit is filled with a mixture of 40 Torr CS2 + 1 Torr O2. Two readout planes with a
central cathode between them are to be placed along the beam direction, configuring two
drift volumes. Each readout plane would be composed of several anode wires connected
to a gain element, to which the ionized gas molecules can release its electrons for normal
avalanche to occur. A simplified cut-view of a detector unit is shown in Figure 17. The
distance between wires is related to the minimum track resolution length and sets a limit
on the lower threshold resolution.

In contrast to the scintillation mechanism discussed in the previous chapter for
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Figure 17 – Sketch of the BDX-DRIFT-1m detector, where z denotes the beam axis; it
was originally planned do detect Dark Matter (‰) produced via a beam dump
experiment. Source: [73].

the CENNS-10 detector, the working principle of a drift chamber relies on measuring
the deposited energy via ionization tracks left by scattering events. These charged tracks
are transported through the gas medium at constant speed due to an external electric
field applied to the detector, until reaching the readout. There, the carried charge is
deposited and yields a signal. The dispersion of these tracks due to natural di�usion and
thermalization is one of the obstacles to setting proper detector precision, usually requiring
an applied extra magnetic field to maintain cohesion, which limits the scalability of the
setup [71].

While typical drift chambers rely on the ionization tracks being transported by
electrons moving through the gas to the readout region, BDX-DRIFT’s di�erential lies
in using negative ion drift instead. This is more e�ective in preserving track shape, due
to the ions remaining near thermal equilibrium with the gas up to relatively high drift
fields, suppressing di�usion to the thermal limit [74]. In order to achieve this, a gas with
strong electronegative nature is required, to bind the electrons tightly enough to maintain
binding while subjected to the external electric field. CS2 is the usual choice for the main
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detector component. The low pressure configuration of the setup is also helpful to push
recoil energy thresholds by limiting di�usion during drift.

A second electronegative gas is also used in order to get the production of addi-
tional ions which drift at a di�erent speed compared to the main detector component.
This allows for a measurement along the beam direction of the distance between the
initial events and readout planes, as the arrival time di�erence is unique for each point
along that axis. This is all done in order to ensure a careful 3D fiducialization of the
active detector volume, allowing for a high degree of background rejection, in particular
with respect to non-beam related sources. This concept has indeed proven successful in
providing very clean results for previous runs of CS2+O2-based DRIFT detectors in Dark
Matter searches [75].

Another crucial characteristic of the setup is the ability to distinguish between
nuclear and electron recoil events. This is imposed by restricting a threshold ionization
current on readout; the principle is that for the same deposited energy, electrons leave
much longer tracks due to their small mass (via the Bethe-Block Equation), in such a way
that both the ionization density is reduced and the arrival time for the full tracks is much
longer. Thus, imposing short reconstructions at readout at certain threshold compared to
the typical arrival time filters out electron recoil events e�ciently [76].

Application of DRIFT to CE‹NS

The ‹BDX-DRIFT proposal [70] takes advantage of the BDX-DRIFT detector
setup described above to achieve good background mitigation and low detection thresh-
olds. In a CE‹NS event, most of the recoil events in the typical CS2 configuration of the
detector would happen o� Sulfur nuclei (with recoil energies up to tens of keVs). The re-
sulting tracks would then end in a direction lying, at most, at 1 degree from the beam line,
allowing for careful exclusion of most types of background-induced signals which would
take place outside this region. However, beam-related backgrounds, such as neutrino-
induced neutrons or inelastic neutrino processes, could still potentially induce scattering
events similar to CE‹NS events. Their contribution has been computed in [70] and shown
to be largely subdominant for ‹BDX-DRIFT, therefore not presenting a problem for the
detector’s capabilities.

While previous deployments of DRIFT detectors worked mostly with a fixed 40
(+1) Torr configuration, it has been suggested in [70] that other possibilities could maxi-
mize the CE‹NS yield. Other choices of gas have also been considered and tested as viable
alternatives to CS2 (eg. CF4 in [74]), and could be considered instead.

The e�ect of these di�erent configurations on the expected event number is two-
fold: it modifies the number of targets and changes the recoil energy threshold. Considering
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a detector with a fixed active volume, working at room temperature, and taking a perfect
gas approximation, the number of targets NT is determined by

NT = fl(P ) NA

mmolar
Vdet, fl = 5.5 ◊ 10≠5 ◊

A
mmolar

g/mol

B 3
P

Torr

4 kg
m3 , (6.1)

where NA is the Avogadro number, Vdet is the detector volume, mmolar is the molar mass
of the gas in the detector and P is the pressure.

Turning to the dependence of Emin
R on the gas pressure and chemical composition,

we have
Emin

R = Eth(Nuci) = fi

3
P

40 Torr

4
keV, (6.2)

with fi = {7.5, 20} for Nuci = {C, S}, respectively [75]. Eq. (6.2) takes into account that
the lower threshold for the recoil energy depends on the length of the tracks that can
be resolved when they reach the readout, with lighter nuclei producing longer tracks and
thus having a lower threshold. In addition, using the Bethe-Bloch equation, the energy
loss scales with the density of the medium, limiting track length for a given recoil energy.

Since we are working in the ideal gas approximation, the density dependence can
be converted into a pressure dependence using Eq. (6.1). Comparing Eq. (6.1) and (6.2)
we see that larger pressures lead to a larger number of targets, but at the same time
increase the minimum recoil energy, discarding lower energy events. Therefore, there is a
trade-o� that must be considered in searching for the ideal pressure configuration given
the chemical composition of the gas inside the DRIFT chamber. It’s also interesting to
notice that this implies that the relative contribution of each nuclear species to the total
rate can be drastically altered, due to the distinct energy regions probing di�erent sectors
of the form factors, which drops o� di�erently for each nucleus. This can be seen explicitly
in Figure 18, where we plot both form factors over an arbitrary recoil energy range.

Event discrimination and Upper limits

We have established how the working principles of the DRIFT detectors can be
applied to CE‹NS, and how its setup can influence the expected event rate. One crucial
detail needs to be emphasized, though, before moving on with the computation of the event
rate. For CENNS-10, it was clear how to reconstruct the recoil energy in keVee for events
measured, allowing for proper multibinned analysis over the recoil energy distribution
of events. This is not so trivial for the case of ‹BDX-DRIFT. This time, there are two
relevant nuclear species inside the active volume, namely Carbon and Sulfur (Oxygen is
neglected since its presence is mostly in trace amounts).

Previously, electron and nuclear recoil events could be discriminated looking at the
inherent di�erence in track length and topology between them, but in the case of Carbon
and Sulfur their mass di�erence is too small for a separation as clear-cut. In fact, for most
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Figure 18 – Comparison between the Sulfur and the Carbon Form Factors, assuming the
Helm Parametrization. Values for the nuclear mass and radii are taken from
[45].

of the region of interest, there is an overlap - one can reconstruct the recoil energy given a
track distribution only if the recoiling element is known for most of the phase space. While
previous work [76] has shown some degree of distinction being possible by measuring other
quantities besides track length, such as number of ion pairs produced, we have not found
explicit demonstration of this being applied in a data-taking setting. Faced with this, we
choose to move forward conservatively, assuming that no such distinction is possible in
the overlapping region. As such, we’ll limit our analysis to a single bin, since the definition
of the recoil energy for a measured track is dubious above Eth(S) and below the minimum
between Emax

R (C), Emax
R (S). The original ‹BDX-DRIFT proposal, likewise, uses a single-

binned analysis for their results [70]. Since we are only interested in the overall event
count in the whole region of interest, there is also no need to quantify quenching for the
detector.

6.2 Neutrino Flux and Region of Interest
For the CENNS-10 case, the flux had a closed analytic form, with well-defined

kinematics from the fiDAR setup at the SNS. This will not be the case for ‹BDX-DRIFT,
where the incident neutrino flux is given by the LBNF Beam Dump spectrum, described
in the DUNE Experiments’s Technical Report [72], and reproduced here in Figure 19.
Given the main goal of the complex as a laboratory for oscillation studies, the setup is
optimized for the flux to be well-approximated as a pure ‹µ beam as it reaches the Near
Detector Facility. In order to allow for the probing of CP Violation e�ects, a pure ‹̄µ
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Figure 19 – Predicted Neutrino flux at the Near Detector Facility of the DUNE complex,
for several positions with respect to the beam axis. Source: [72].

setting is also available.

The Near Detector facility allows for di�erent configurations with respect to the
beam axis; the inherent trade-o� one must consider is that going o�-axis will diminish the
incident flux, but also mitigate beam-related backgrounds. For our case, the computation
of the latter has already been mentioned as largely subdominant for the whole available
spectrum [70], and thus only the on-axis configuration will ultimately be considered, in ‹

mode.

The energy and intensity of the DUNE beam are both bigger than that of the
SNS beam, peaking between 2 and 3 GeV and with a tail extending all the way up to 5
GeV. In principle, this should already be considerably above the ideal energy region for
CE‹NS phenomena, but we can again invoke the beam-related background computation
in [70] to guarantee there is no significant loss of precision in using the whole available
flux, instead of trying to impose cuts. This motivates the choice of the maximum incident
neutrino energy as Emax

‹ = 5 GeV. In fact, this is particularly convenient because, under
our conservative assumption of indistinguishability between Carbon and Sulfur events,
there is no simple way to introduce cuts in recoil energy. Using the whole flux will solve
this by setting a natural cuto� corresponding to the kinematic limit of the cross section,
related to the maximum between each species’ maximum recoil energy.

6.3 Event Rate
Summarizing the main points of the previous sections, we have fixed the main

quantities needed for the computation of the event rate prediction:
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• Di�erential Flux: Provided by the DUNE Technical Report [72], and presented
in Figure 19;

• Number of Targets: Fixed by equation (6.1) for a given pressure configuration,
assuming an ideal gas approximation. For this proposal, we assume an active volume
of 10m3, corresponding to ten functional units connected along the beam axis;

• Recoil Energy bins: We’ll assume a conservative single-binned analysis, with Emin
R

given by eq. (6.2) for each nuclear species, and extending through all of the allowed
phase space, set for Emax

r = 2(Emax
‹ )2/mN ƒ 3192 keV, set as the recoil limit for

Carbon, which is chosen so as to not discard any Sulfur or Carbon event;

• Neutrino Energy limits: The minimum neutrino energy is again given by (2.15),
by using the smaller recoil energy threshold between the two nuclear species as
defined in the previous item. The maximum neutrino energy is set by the DUNE
flux, as Emax

‹ = 5 GeV, as mentioned before;

• E�ciency: Since the experiment is a future proposal, there hasn’t been realistic
studies of its e�ciency. We follow [70] in assuming 100% detector e�ciency.

The total event rate will then be a weighted sum of the individual rates due to
each nuclear species, with coe�cients determined by stoichiometry. Since Oxygen is only
present in trace amounts compared to Carbon and Sulfur, we have

RTot(P ) = R(C, P ) + 2R(S, P ), (6.3)

where R(X, P ) corresponds to the event rate in eq. (2.56) for a given choice of pressure
configuration, which determines NT (P ) following (6.1) and Emin

R via (6.2). Here, we employ
the Helm Form Factor again for the computation for convenience, but we remark that at
the higher energies of the DUNE flux, we could probe the region toward the tail-end of the
form factor, where semi-coherent responses become more significant. In fact, [70] does a
brief study of associated uncertainties among di�erent phenomenological parametrizations
for the form factor, and there indeed seems to be some discrepancy. We will present
our analysis as a benchmark case, and leave the determination of the associated nuclear
uncertainties for future work.

The number of Standard Model events as a function of the pressure inside the
detector is show in Figure 20, for a science run of 7 years. We present each nucleus’
contribution separately, in addition to their weighted sum; this could prove useful in
future work if the capability for track identification of the detector were to be established.

Benchmark values for the models introduced in 3.4 are illustrated in Figure 21,
under the same conditions.
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Figure 20 – Expected number of CE‹NS events in ‹BDX-DRIFT as a function of the pres-
sure configuration (in Torr) for a data-taking period of 7 years. The vertical
grey line shows the pressure value where the Carbon contribution overtakes
the Sulfur one. The number of events is computed in the SM and, for illus-
trative purposes, we do not impose any cut on the maximum recoil energy.
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(a) ‹BDX-DRIFT event rate predicted for the Z Õ
Uni model

(b) ‹BDX-DRIFT event rate predicted for the Z Õ
B≠L model

(c) ‹BDX-DRIFT event rate predicted for the Z Õ
µ≠· model

Figure 21 – Expected number of CE‹NS events in ‹BDX-DRIFT as a function of the pres-
sure configuration (in Torr) for a data-taking period of 7 years, for benchmark
choices of gZ

Õ , mZ
Õ in each of the models of interest.
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7 Experimental Proposal - ESS-CE‹NS De-
tectors

Last chapter introduced an interesting idea using the “know-how” from Dark Mat-
ter detection designs to setup a somewhat unorthodox proposal for a CE‹NS experiment,
taking advantage of the massive supportive structure of DUNE. In this chapter, we’ll
present an ensemble of proposals closer to the concept of the COHERENT Collaboration,
also trying to show the advantages of inserting them in the context of a new facility.

The European Spallation Source (ESS) is a multi-disciplinary research facility
complex currently under construction on the outskirts of Lund, Sweden. It is planned
to house the world’s most powerful pulsed neutron source, combining the world’s most
powerful superconducting proton linac with an advanced hydrogen moderator [62]. With
primary infrastructure construction finished as of December 2021, instrument deployment
and calibration is ongoing until the planned start of its scientific programme in 2013.

While the primary research goals of the facilities are centered around Neutron
Physics, its setup with a proton beam colliding into a dense target inside a monolith
provides conditions almost identical to those of the Oak Ridge Laboratory’s SNS. Besides
the neutron flux generated by spallation, this construction should also generate a fiDAR
neutrino flux which could be used for CE‹NS experiments in a realization close to the
one adopted by the COHERENT Collaboration. This has lead to myriad of proposals [77]
by a part of the specialized community about ways to harness this new neutrino source
for breakthrough studies. Before getting into the specifics of some of these proposals, it’s
useful to look compare the capabilities of the ESS with the ones o�ered by the SNS.

7.1 ESS vs SNS
There are three main di�erences between the ESS and SNS: energy output, target

composition and pulse timing. Since the neutrino fluxes for both originate from pion and
muon decays-at-rest, the spectrum is essentially fixed up to a normalization, following the
shape we already presented in eq. (5.4) and Figure 15.

This normalization is given by the total exposure (in POT) over a data-taking
period multiplied by the neutrino yield per proton-on-target, and distributed isotropically
from the target monolith to the detector position, following eq. (5.8). The exposure (in
POT) can be computed by a simple formula:

NPOT = W

Ep
◊ T, (7.1)
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where W is the power of the beam, Ep is the average proton energy, and T is the ac-
cumulated time of beam delivery (ie. total time with the beam turned “on”). The SNS,
at the time of the CENNS-10 operation, had a nominal power of 1.4 MW, delivering 1
GeV protons on target [48]. For its full operation capacity, the ESS is expected to reach
nominal power of 5 MW, with 2 GeV protons [62]. With both operating for 5000 hours
of on-beam time per year, this implies an increase in exposure by a factor of 2.5 for the
ESS in comparison to the SNS. Naturally, this leads to an intensification of the flux, since
its normalization is proportional to NPOT, and to a higher number of expected CE‹NS
events over the same time period.

Another quantity influencing the normalization of the flux is r, the neutrino yield
per proton-on-target. This is directly related to the number of pions produced for each
collision of protons from the beam pulse with the target; di�erent materials can result in
di�erent yields. There’s also a dependence on the incoming proton energy: higher energies
facilitate double-pion production per interaction [78], raising the yield. Following [62],
dedicated simulations performed show a conservative improvement of a factor of 3.75 for
the neutrino yield favoring the ESS at full-capacity, with a tungsten target, compared to
the Hg target at SNS with beam parameters W = 1 MW, Ep = 1 GeV.

The pulse time of the SNS is a crucial feature for flavor discrimination via prompt/
delayed components of the flux. For the CENNS-10 configuration, 360ns Full-Width at
Half-Maximum (FWHM) pulses were delivered on target at a 60Hz rate. This sits between
the orders of the mean lifetimes of the pion (·(fi+) ƒ 26 ns) and of the muon (·(µ+) ƒ
2200ns). The result is that pions produced from the late protons reaching the target in the
tail of the pulse should still decay before the bulk of muon decays - therefore, the mono-
energetic peak of ‹µ from the pion decay at rest should arrive earlier at the detector,
dominating over the other neutrino components from muon decay for an early, narrow
time window. This will not be the case for the ESS, with a design pulse timing of 2.8
ms, at 14 Hz, thus making it unsuitable for flavor discrimination. Some degree of flavor
separation should still be possible, however, based on recoil energy distribution of events
[62].

Another consequence of the long pulse timing at lower frequency is a substantial
increase of the duty factor, corresponding to the ratio of beam on/o� timings. This is
inversely proportional to background mitigation, since it leaves a larger window open for
background events due to surrounding environment e�ects. This is specially significant
for the control of cosmic ray background in ground-level and shallow-depth experiments
in general. Despite the duty factor increase, the ESS should still have a better signal-to-
background figure of merit, due to the flux intensification [62]. This scenario does not take
into account the influence of beam-related backgrounds, though.
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7.2 Proposed Detector Setups
Despite the caveats due to pulse characteristics, the higher intensity of the neutrino

flux proportioned at the ESS will be favorable to collect statistics at a projected faster
pace than COHERENT’s detectors at the SNS [62]. With the intention of the community
to have the field moving past the discovery era into a precision one, this feature is crucial
step in that direction. As such, several proposals of upgraded detection techniques to be
employed at a CE‹NS program at the ESS have been put forward to try to make full use of
its capabilities for Neutrino Physics. We shall very briefly go over some of them, referring
to [62] for more complete descriptions and further references, and [77] for a grouping of
other ESS-related CE‹NS proposals.

• Cryogenic Scintillator (ESS-CsI)

This proposal intends to use a liquid nitrogen-cooled (77k) undoped CsI scintillator
as a low threshold detector array. It is similar to the one used for the first detection of
CE‹NS by the COHERENT Collaboration [48], which was a Sodium-doped CsI[Na]
detector at room temperature. The main advantage of the former over the latter
would be its higher light output and an expectation of the measurement of quenching
e�ects down to a sub-keV scale, boosting precision and allowing for higher statistics.

The suggested design for the ESS involves a small array of four 5 ◊ 5 ◊ 50 cm3

crystals, for a total mass of 22.5 Kg, each read out by two LAAPDs (Large Area
Avalanche Photodiode). With conservative estimates for the quenching factor, the
threshold recoil energy could reach values around 1 keVnr.

• Charged-Coupled Device (ESS-Si)

Silicon-based charged-coupled devices (CCDs) are a popular instrument for rare
event searches, due to their capability for low threshold energies with reduced read-
out noise. These have already been used in reactor-based CE‹NS initiatives (eg.
[79]), as well as Dark Matter searches (eg. [80]) in recent years with good success.
This proposal involves a Skipper CCD detector array, which is characterized by its
capability to reserve the charge in a pixel for repeated non-destructive sampling,
yielding in the ideal case a sub-electron readout noise for a large number of re-
samplings. This boosts background rejection capabilities and massively lowers the
threshold even in comparison to ordinary CCDs.

The suggested design for the ESS mimics the one proposed for DAMIC@SNOLAB
[81], with a 1 kg skipper CCD and sampling reaching a threshold recoil energy of
0.16 keVnr.

• High-pressure Gaseous TPC (ESS-Xe)
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Another popular choice of low-threshold detector commonly used for Dark Matter
searches, high-pressure noble gas TPCs present excellent energy resolution com-
pared to other proposals even at very low energies. The pure gas setup is preferred
in favor of dual phase proposals in this context to mitigate charge trapping and
delayed release in the interface. These can typically be very limiting for low energy
sensitivity detectors at shallow depths due to cosmic ray backgrounds, even with
proper shielding.

While a variety of noble gases can be used, Xenon is the usual choice due to its high
atomic weight, well-studied quenching and the possibility for analysis with di�erent
triggering requirements, either by primary scintillation (S1) only data or by its ratio
to electroluminescent amplification of ionization (S2).

The suggested design for the ESS is inspired by the detector of the NEXT experiment
[82], with a 20 kg active volume of Xenon with projected 0.9 keVnr threshold recoil
energy.

• p-type point contact HPGe (ESS-Ge)

P-type Point Contact (PPC) Germanium detectors are semiconductor detectors
which benefit from an enhanced capability of background rejection via pulse shape
discrimination. These are specially e�cient in distinguishing localized single-scatter
events from multiple-site energy depositions, which are typical for Compton-like
scattering backgrounds from cosmic rays and other sources. Combined with the
possibility of sub-keV threshold and low noise ratio, this kind of detector is very
well suited for rare, low energy searches, and already employed in other CE‹NS and
neutrinoless double beta decay initiatives [83].

The suggested design for the ESS consists of two Germanium PPCs, totaling 7 kg of
active mass, equipped with shield with double active veto to tag neutrino-induced
neutrons produced from the outer shield. The projected threshold recoil energy for
the detector is of 0.6 keVnr.

• Scintillating Bubble Chamber (ESS-Ar)

The CENNS-10 detector already demonstrated the powerful capability of scintillat-
ing liquid Argon chambers as a CE‹NS detector, but their threshold energy and
low energy resolution are limited by a background derived from beta emission of
cosmogenically produced Ar39 inside the detector volume. This issue is mitigated
with the use of liquid argon in a bubble chamber setup, which is extremely e�-
cient in filtering out this kind of electron-recoil background, resulting in improved
threshold and resolution [62]. Combined with the intrinsic discrimination of electron
and nuclear recoils proportioned outside of the Ar39 emission region via scintillation
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timings, described previously for CENNS-10, this yields the best degree of NR/ER
discrimination amongst all of the detector proposals.

As a trade-o�, however, energy reconstruction is not viable for this case, limiting the
analysis to a single-binned total event rate count, as was the case for the conservative
approach taken for the ‹BDX-DRIFT proposal. While we will not delve into this
possibility, an excellent control of the energy thresholds could enable a two-step
analysis with di�erent threshold choices, allowing the experiment to probe possible
momentum dependencies of New Physics scenarios in specific windows.

The suggested design for the ESS consists of an active volume with 10 kg, and
projected threshold recoil energy of 0.1 keVnr.

• Standard Bubble Chamber (ESS-C3F8)

The last proposal concerns a C3F8 bubble chamber, inspired by the PICO Experi-
ment [84]. Like for the Argon bubble chamber discussed above, it boasts high degree
of discrimination for nuclear and electron recoil events, though it is limited to total
event rate analysis and presents a higher threshold compared to the other proposals.
However, a vast amount of data and further studies of related backgrounds, detector
capabilities and overall operation is available due to past and current research for
the PICO collaboration, presenting a very realistic test study.

The suggested design for the ESS consists of an active volume with 10 kg, and 2
keVnr threshold recoil energy.

7.3 Neutrino Flux and Region of Interest
As aforementioned, the neutrino flux at the ESS will follow a traditional fiDAR

distribution, given by eq. (5.4), with normalization given by (5.8). While the exact po-
sitioning of the detectors will depend on available space within the beam dump alley of
the facility, we shall consider a distance L = 20 m for all proposals. At full capacity, the
exposure is 3 ◊ 1023 POT/year, and a full science run comprised of 3 years of data taking
is assumed. The higher energy compared to the SNS yields a rate of neutrinos per POT,
per flavor of r = 0.3.

Again, the whole available range of the flux will be considered, setting Emax
‹ ƒ 52.8

MeV, and the maximum recoil energy for each nuclear species given by (2.14). Except for
the bubble chamber designs, which will only work with a total event rate analysis, we
shall define the bins for the proposals according to the energy resolution of each detector
at threshold, via a Gaussian energy smearing such that

‡(ER) = ‡0

Û
ER

Eth
R

, (7.2)



Chapter 7. Experimental Proposal - ESS-CE‹NS Detectors 82

where ‡ is the energy resolution and ‡0 the resolution at ER = Eth
R . Each bin is then

defined by

2‡

A
Er

R(i) + El
R(i)

2

B

= Er
R(i) ≠ El

R(i), (7.3)

meaning that for the i-th bin with left and right edges at, respectively, (El
R(i), Er

R(i)),
its width is equal to twice the energy resolution at its center. To construct the bins, we
define El

R(1) = Eth
R , for each detector.

7.4 Event Rate
Summarizing the main points of the previous sections, we have again fixed the

main quantities needed for the computation of the event rate prediction:

• Di�erential Flux: Provided by eq. (5.4), with normalization given by eq. (5.8)
with r = 0.3, NPOT = 6◊1023 POT for a 3-year run and L = 20 m for all proposals;

• Number of Targets: Fixed for each detector by equation (5.9), where Mmolar is
given by the molecular molar mass for detectors with multiple nuclear species.

• Recoil Energy bins: For the bubble chambers, a single-binned analysis will be
assumed, with Emin

R given by each detector’s threshold recoil energy, and extending
through all of the kinematically allowed region, set by eq. (2.14). For the other
experiments, the bins are given by eq. (7.3), setting El

R(1) = Eth
R ;

• Neutrino Energy limits: The minimum neutrino energy is again given by (2.15),
by using the recoil energy threshold for each detector. The maximum neutrino energy
is set by the kinematically allowed region, encompassing the whole flux, with Emax

‹ =
mµ

2 ;

• E�ciency: Following [62], the e�ciency will be assumed as a step-function, with
Ae�(ER) = 0 for ER < Eth

R and Ae�(ER) = 0.8 for ER Ø Eth
R , for each detector.

The total rate per bin for a detector will again be a weighted sum over the nuclear
species present, with coe�cients given by simple stoichiometry. The rate per bin for a
given detector is given by

R(i) =
ÿ

X

CX
NAMDet

Mmolar

⁄ ER(i+1)

ER(i)
dER Ae�(ER)

⁄ E
max
‹

E
min
‹

dE‹

ÿ

‹={‹µ,‹e,‹̄µ}

d‡(T, ‹)
dER

d„(‹)
dE‹

. (7.4)

with CX the stoichiometry coe�cient for a nuclear species X, and all the relevant quantities
are given for this species as previously defined.
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All the relevant information for each detector is summarized in Table 1. We also
adopt a background prediction based on [62], already including the duty factor reduction
for the ESS.

Detector Technology Target Mass [kg] Emin
r [keVnr]

�E
E

----
Eth

(%) E
max
r [keVnr] background [day

≠1
]

Cryogenic scintillator CsI 22.5 1 30 46.1 406

Charge-coupled device Si 1 0.16 60 212.9 8.5

High-pressure gaseous TPC Xe 20 0.9 40 45.6 357.6

p-type point contact HPGe Ge 7 0.6 15 78.9 329

Scintillating bubble chamber Ar 10 0.1 40 150.0 4 ◊ 10
≠2

Standard bubble chamber C3F8 10 2 40 329.6 4 ◊ 10
≠2

Table 1 – Summary of properties for the detectors possibly employed at the ESS: tar-
get, mass, recoil energy threshold, width for the smearing and maximum re-
coil energy, steady-state background. The steady-state background includes the
4 ◊ 10≠2 reduction by the ESS duty factor.

In order to compute the event rates, we have assumed again the Helm Form Factor
via eq. (1.15). Following the verification done against the alternative form factor of [42]
in the context of the SNS’ fiDAR flux, this should not influence results at the energy
range we are considering. Due to limitations on the precision and availability of data on
the neutron radius and its distribution within each particular nuclear species, we shall
work with a Fp(q) = Fn(q) approximation, which shouldn’t introduce large errors in this
energy range. The relevant isotopes and respective radii necessary for the computation of
the form factor are presented in Table 2, with masses taken from [45].

133Cs 127I 28Si 132Xe 72Ge 40Ar 12C 19F
Rp [fm] 4.80 4.75 3.12 4.79 4.06 3.43 2.47 2.90

Table 2 – Isotopes and respective nuclear radius values, taken from [45].

The resulting total rates for the Standard Model prediction on each of the detectors
are presented in Table 3, in agreement with the predictions from [62]. We shall not present
benchmark computations for the Z’ prime models in favor of focusing on the sensitivity
results in the next chapter, due to the large number of detectors and models considered.

ESS-CsI ESS-Si ESS-Xe ESS-Ge ESS-Ar Ess-C3F8

SM Events/year 8591 81 8033 1603 1393 540

Table 3 – Standard Model prediction for the total number of events per year for all of the
detector proposals.
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8 Sensitivity Analysis

After careful construction of the necessary theoretical framework in Part I, in Part
II we have so far applied that formalism to a well-studied benchmark case for verification,
and followed it up with descriptions for new experimental proposals, pointing out how to
extract the needed information for event rate computation from them. This has been all
done in preparation for the analysis in this chapter. We shall combine everything we’ve
described and discussed in the rest of this work in order to measure how e�ective these
new experiments may be in constraining the parameters from the models defined in Sec.
3.4. Specifically, we want to answer: how much of the parameter space of these models
may be excluded at a 90% Confidence Level relative to the Standard Model prediction?

We start by reintroducing our definition for the binned ‰2 statistic, previously
defined in Chapter 4:

‰2(gZ
Õ ; mZ

Õ) =2 min
(›S ,›B)

ÿ

i

Ë
›SNi(gZ

Õ , mZ
Õ) + ›BNB,i

≠(NSM,i + NB,i)
A

1 + log
A

›SNi(gZ
Õ , mZ

Õ) + ›BNB,i

NSM,i + NB,i

BBD

+
A

1 ≠ ›S

‡S

B2

+
A

1 ≠ ›B

‡B

B2

. (8.1)

Here, Ni(gZ
Õ , mZ

Õ) is the CE‹NS event rate for the i-th bin computed for one of the Z’
models for a given value of coupling and mediator mass; NB,i is the number of back-
ground events for the i-th bin; NSM,i is the number of CE‹NS events predicted by the
Standard Model for the i-th bin; ›S, ›B are nuisance parameters respectively related to
the normalizations of the signal event rate (which is CE‹NS) and background rate, with
corresponding uncertainties ‡S and ‡B.

Assuming that our sample is large enough so that Wilks’ Theorem applies, we can
build the desired confidence interval at 90% C.L. by determining the boundary via eq.
4.11, such that

Ò
‰2 = 1.645. This assumption should be reasonable given the verification

of its validity for the CENNS-10 detector results in [48] and studies of diagonal NSI
parameters with CsI in [47], according to the work presented in [85].

‹BDX-DRIFT Background and Uncertainties

For the ‹BDX-DRIFT proposal, we use a single bin constraining only the to-
tal event rate. While the beam-related background due to Neutrino-induced Neutrons
is negligible, the degree of steady-state and other beam-unrelated backgrounds is hard
to determine precisely, and should vary a lot depending on the e�ectiveness of shielding
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techniques employed. While results from the COHERENT collaboration [47, 48, 65] prove
optimistic in that front, we proceed with the most conservative case outlined in [70]. This
consists in setting NB,i = 0.25 ◊ NSM,i. In other words, we are adding the background as
a 25% fraction on top of the expected signal event rate in each bin.

The uncertainty ‡S, related to normalization of the signal event rate, is dominated
mostly by the uncertainty in the determination of the neutrino flux and the contribution
from nuclear e�ects appearing due to the simplified form factor parametrization, specially
in the higher energy tail. We estimate uncertainties of 10% for both, adding in quadrature
to obtain ‡S ƒ 0.14 for this analysis. Due to the capabilities of direction reconstruction
for events, we expect systematics related to the background events to be small, defining
‡B = 0.01.

ESS Backgrounds and Uncertainties

For the ESS proposals, we shall closely follow the values described in [62] for the
background distribution, presented here in Table 3. Bins are defined following eq. (7.3)
for each of the detector proposals with the exception of the Argon and C3F8 bubble
chambers, which will use a single-binned analysis following their capabilities described
in Chapter 7. Again following [62], we shall adopt signal and background normalization
uncertainties of ‡S = 0.1, ‡B = 0.01 for all detectors. The former is based on an estimate
of improvement for the quenching factor uncertainty with respect to [47], which was the
dominant contribution for the first run of the CsI[Na] detector; this has indeed been
concretized in the most recent results for the detector [65]. Likewise, the latter assumes a
similar degree of uncertainty in background determination from on/o� beam analysis in
comparison to COHERENT’s previous results.

Using the aforementioned values, we apply the testing algorithm outlined in Sec.
4.2, iterating over the three models of Sec. 3.4 for each of the detectors. The obtained
sensitivity curves are presented next.

8.1 Sensitivity for the Universal Z’ Model
The results for the Universal Z’ Model are shown in Figure 22, showing the 90%

C.L. limits obtained for ‹BDX-DRIFT (left) in two distinct pressure configurations, and
for the various ESS-based detectors (right).

In the left panel, the orange sensitivity curve is obtained by simulating the ‹BDX-
DRIFT detector filled with CS2 at P = 411 Torr, determined in [70] as the configuration
which maximized the signal rate for the Standard Model. However, the sensitivity is
dependent on the di�erence and on the ratio between the Standard Model and Universal
Z’ predictions, and not just on the absolute value of the two. It’s natural, therefore, to
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Figure 22 – Future sensitivity at 90% C.L. in the mZ
Õ≠gZ

Õ plane for the universal Z Õ model
for the ‹BDX-DRIFT detector (left) exploiting CS2 at two di�erent pressures,
and the various detectors described in the text at the ESS (right). The dark
green regions are excluded at 90% C.L. by CONNIE [79] and COHERENT
[56] assuming dominant Z Õ decays to SM states. The dashed black curve
shows the sensitivity of ‹IOLETA [86]. The gray shaded areas are excluded
at 90% C.L. by BaBar [87] and NA64 [88, 89] assuming that the Z Õ decays
dominantly in invisible dark sector states.

wonder whether there might be an alternative configuration which yields better sensitivity,
at the cost of a reduced number of overall events.

The blue curve is obtained for an alternative configuration choosing P = 60 Torr,
and shows a more stringent result compared to the previous one in the mz

Õ . 100 MeV
region. Still, it is very slightly dominated for the higher mass regions. There were two
main motivations for this choice of alternative pressure value:

• Pressure configurations around 40 Torr have already been extensively studied and
applied in the context of Dark Matter searches using previous detectors from the
DRIFT line, being a convenient choice from a practical point of view [73];

• Following the determination of the Z’ contributions in the Simplified Model approach
and the related discussion in Sec. 3.4, the size of the modifications to the Standard
Model charge increase for processes with lower exchanged momentum, which is
related to the recoil energy of the event (2.9):

|‘N | Ã 1
m2

Z
Õ + |q̨|2

ƒ 1
m2

Z
Õ + 2mT ER

. (8.2)

Here, the mass of the mediator acts as a regulator of sorts, since the factor becomes
essentially constant when mZ

Õ ∫ |q̨|. Inversely, if the mass of the mediator is su�-
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ciently small, there exists a range of recoil energies where there will be a significant
e�ect following the variation of the exchanged momentum. For a conservative exam-
ple, using |q̨| ¥ 50 MeV as the maximum momentum established for the coherent
condition back in eq. (1.11), and assuming a mediator mass of mZ

Õ = 100 MeV,
this corresponds to a nearly 25% variation for |‘N | within the whole kinematically
available range.

We’ve remarked back in Sec. 6.1 that there is a trade-o� to be considered involving
the pressure configuration value, since it is proportional to the number of targets NT ,
but increasing it also raises the threshold recoil energy for the detector, pushing more
low-energy events out of the rate prediction. It is not trivial to determine analytically
how much these e�ects o�set each other. Nevertheless, what we just established is
that the second e�ect could in principle introduce a larger variation, due to extending
a range where the Z’ contribution is maximal via its unique q-dependence. Since
the sensitivity, as aforementioned, is related to the di�erence between the predicted
rates, it’s a reasonable assumption to expect that lower pressure configurations could
exhibit better sensitivity for lighter mediator masses (in particular, . O(100MeV )).

Once the bound for the P = 411 Torr configuration was fixed, we randomly selected
a few points over the curve f90% = (gZ

Õ , mZ
Õ). We then computed again the significance

for those values of the parameters with randomly chosen alternative pressure P Õ config-
urations, as a qualitative quick check of how close to optimal P = 411 Torr is for the
sensitivity determination. If they resulted in

Ò
‰2(gZ

Õ , mZ
Õ , P Õ) > 1.645 (the 90% C.L.

threshold), shifting configurations would result in gain of sensitivity for that point. As a
general trend, lower pressures relative to the orange curve yielded better sensitivity for
the region of lower mediator mass, a possibility outlined in the second point above. Tak-
ing into account the practical aspects outlined in the first point, a representative value of
P = 60 Torr was chosen for a full rerun of the analysis, resulting in the blue curve in the
left panel of Figure 22.

The right panel shows the the obtained sensitivity for the six detector proposals for
the ESS under consideration, identified by their target material as CsI (blue), Ge (purple),
Si (orange), Ar (green), Xe (red) and C3F8 (brown), following the identification in Table
1. Stronger sensitivity is obtained by the detectors with higher atomic mass number (CsI
and Xe) as would be naively expected due to the coherent enhancement. C3F8 however is
an exception to this, due to possessing the highest threshold among all the detectors.

Blind Regions

For both panels, there is a thin diagonal strip inside the region delimited by
COHERENT-CsI which is actually not excluded at 90% C.L., as shown in [56]. It starts
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around mZ
Õ ¥ 100 MeV, extending continuously in the direction of heavier mediator

masses. We’ll name this as a blind region for the detector. In order to understand its
meaning, let’s look again at |‘N |, which is the Z’ contribution shown in eq. (3.13).

While the previous discussion highlighted the e�ect of the |q̨|2 dependence becom-
ing more significant for lighter mediators, one can also consider what happens in the case
of heavier Z’ masses. Following the discussion in Sec. 2.3, as mZ

Õ æ mZ the q-dependence
becomes suppressed, and we can again neglect the dynamics of the mediator in the Simpli-
fied Model approach in favor of a Fermi-like EFT. Ultimately, it corresponds to adopting
the NSI parametrization as discussed in Sec. 3.2. Since we’re taking Fp(q) ƒ Fn(q), in
this limit the nucleon charges factorize from the energy dependency, and the Rate will be
proportional to

R Ã
C

Z
31

2 ≠ 2 sin2 ◊W

4
≠ A ≠ Z

2 + A
3g2

Z
ÕÔ

2GF m2
Z

Õ

D2

© Q̃2. (8.3)

This rate is clearly invariant under a transformation Q̃ æ ≠Q̃. Neglecting the proton
contribution from the Standard Model due to the value of the mixing angle, this implies
that we have an exact degeneracy between the Universal Z’ model and the Standard
Model rates if the NSI parameter ‘ © g2

Z
Õ/m2

Z
Õ satisfies

C

≠A ≠ Z

2 + A
3‘Ô
2GF

D

= A ≠ Z

2 =∆ ‘ = GF

Ô
2

3
A ≠ Z

A
. (8.4)

This explains why the blind region consists of a diagonal strip in the gZ
Õ ◊mZ

Õ space, as it
is equivalent to a line with gZ

Õ/mZ
Õ constant, so the value of ‘ that yields the degeneracy

is preserved throughout its extension.

However, this is not exact. While not neglecting the proton contribution will still
yield an exact (although, with a less elegant expression) degeneracy, introducing the
proper q-dependence lifts it since now the charge can’t be carried through the ER inte-
gration, such that the rate is now instead proportional to

R Ã
⁄

dER

C

≠A ≠ Z

2 + A
3g2

Z
ÕÔ

2GF (m2
Z

Õ + 2mT ER)

D2

, (8.5)

remembering that |q̨|2 = 2mT ER, following eq. (2.9). Now, fixing a point (gZ
Õ , mZ

Õ), we can
still solve the exact degeneracy condition via (8.4) simply adding to the denominator the
|q̨|2 term. Although, since we will now be integrating over ER, we are e�ectively summing
over an interval where every value yields a non-degenerate di�erential rate, except for a
single point; in general, this should not yield a degenerate total rate.

Nevertheless, for the Universal Z’ Model, it’s a fact that there is a non-trivial
region where its rate approaches the Standard Model one due to a sign reversal of the
e�ective charge as the new coupling grows. The general position and shape depends on
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Figure 23 – Future sensitivity at 90% C.L. in the mZ
Õ ≠ gZ

Õ plane for the B ≠ L model for
the ‹BDX-DRIFT detector (left) exploiting CS2 at two di�erent pressures,
and the various detectors described in the text at the ESS (right). The dark
green regions are excluded at 90% C.L. by NA64 [95], E141 [96], Orsay [97],
U70 [98], COHERENT [56], NA48/2 [99], KLOE [100, 101], BaBar [102] and
LHCb [103] assuming dominant Z Õ decays to SM states.

the detector’s composition, with a rough proportionality to A≠Z
A as the mediator mass

grows. This will be a good motivator for the deployment of multiple CE‹NS detectors
with di�erent target compositions, so as to cover each others’ blind regions.

Due to our procedure for constructing these limits, mapping the blind region in
detail is very intensive computationally. As such, we performed limited benchmark tests
which showed a very thin line, already within the region excluded by COHERENT for
both ‹BDX-DRIFT configurations and most ESS detectors. As such, we do not present
it in Figure 22. The same applies to the Lµ ≠ L· model, which will be discussed later.

Back to the plots, for both panels, the dark green shaded regions are already ex-
cluded at 90% C.L. by CONNIE [79] and COHERENT [56]. The black dashed curve
furthermore shows the sensitivity that another proposed experiment, the Neutrino Inter-
action Observation with a Low Energy Threshold Array (‹IOLETA), can reach for the
universal Z Õ model [86, 90–94]. These searches assume that the Z Õ decays most of the time
to SM states. If the Z Õ decays predominantly to invisible dark sector particles, existing
searches from the BaBar [87] and the NA64 [88, 89] experiments apply and exclude the
gray region.
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8.2 Sensitivity for the B ≠ L model
Figure 23 presents the 90% C.L. sensitivity obtained for the B ≠ L model for

each of the experimental proposals. The dark green shaded area is excluded by existing
experimental searches assuming dominant Z Õ decays into SM particles, from fixed target
experiments (NA64 [95], E141 [96], Orsay [97] and U70 [98]), COHERENT [56], KLOE
[100, 101] and NA48/2 [99]. Furthermore, as shown in Ref. [104], it is possible to reinterpret
the BaBar [102] and LHCb [103] bounds on dark photons and adapt them to the B ≠ L

case.

The panel on the left of Figure 23 shows the sensitivity for the ‹BDX-DRIFT
detector with the same configuration as used for the Universal Z’ analysis, CS2 at 60 Torr
(plotted in blue) and 411 Torr (plotted in orange). While in the previous case there was
only a very marginal improvement over COHERENT-CsI detector’s bounds, for the B-L
model there is a more significant improvement roughly over the range of 30MeV < mZ

Õ <

200MeV, in particular for the 60 Torr case. This region sits between the most stringent
limits from accelerator and fixed targets experiments, and ‹BDX-DRIFT would help to
improve the coverage between them

The 90% C.L. sensitivity curves for the experiments at the ESS are shown in the
right panel. These detectors, and in particular the one based on Xe, will be able to probe a
good part of the parameter space that currently is not excluded by COHERENT, collider
or fixed target experiments. It also encompasses the entirety of the region sensitive to
‹BDX-DRIFT.

On the other hand, we show in Figure 24 how the future ‹BDX-DRIFT and ESS
sensitivity compare to current bounds assuming the Z Õ to dominantly decay into invisible
particles belonging to a dark sector. The gray region is currently bounded by BaBar [87]
and NA64 [88, 89] searches.1 Both sets of detectors have the potential to improve the
limits in the range 100 < mZ

Õ/MeV < 500 and above 8 GeV, where the BaBar experiment
abruptly loses sensitivity and the bounds from LEP [106] are too weak.

Di�erently from the Universal Z’ case, we do not expect blind regions for the B-L
model. This can be understood directly by looking at the degeneracy condition in eq.
(8.4) after replacing the B-L contribution:

C

≠A ≠ Z

2 ≠ A
‘Ô

2GF

D

= A ≠ Z

2 =∆ ‘ = ≠GF

Ô
2A ≠ Z

A
. (8.6)

Since A > Z, this implies ‘ < 0. However, we defined ‘ = g2
Z

Õ/m2
Z

Õ previously, where
both parameters are real numbers, and therefore ‘ must be non-negative, such that the
degeneracy condition is not satisfied. Furthermore, in the previous case, the blind region
1 The B ≠ L model can also be probed in neutrino-electron scattering at DUNE [105]. Since, however,

the future sensitivity is not derived using CE‹NS, we do not show this region in our plot.
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Figure 24 – Future sensitivity at 90% C.L. in the mZ
Õ ≠ gZ

Õ plane for the B ≠ L model for
the ‹BDX-DRIFT detector (left) exploiting CS2 at two di�erent pressures,
and the various detectors described in the text at the ESS (right). The gray
shaded areas are excluded at 90% C.L. by BaBar [87] and NA64 [88, 89]
assuming that the Z Õ decays dominantly in invisible dark sector states.

was e�ectively generated by a change of sign of the e�ective charge, which is not present
here: both the Standard Model and Z’ contributions have the same (negative) sign, and
the event rate is monotonic with respect to gZ

Õ .

8.3 Sensitivity for the Lµ ≠ L· model
Figure 25 shows the 90% C.L. sensitivity obtained by the ‹BDX-DRIFT detector

at the LBNF (left) and several hypothetical experiments at the ESS (right) for the Lµ≠L·

model. The sensitivities are compared with the 95% C.L. excluded regions (dark green)
obtained in [111] exploiting the neutrino trident cross section measured by the CCFR
collaboration [112], by the SM Z bosons decaying into four leptons searches at the ATLAS
[108, 109] and CMS [110] experiments (which can be reinterpreted assuming that the SM
Z boson decays into a Z Õ and two muons), and by the BaBar search for e+e≠ æ Zµ+µ≠,
where the Z Õ decays into muons [107]. Finally, we show also the reinterpretation by [114] of
the Borexino limits [113] (dark green) and the 2‡ region needed to explain the anomalous
magnetic moment of the muon (red region) [7, 115, 116].

While the ‹BDX-DRIFT detector will not be sensitive to regions not already
excluded by current existing searches, the various experiments proposed for the ESS have
the potential to probe a large sector of unexplored region, in the range 3 < mZ

Õ/MeV < 70.
Additionally, all of them should be able to reach the so called “(g ≠ 2)µ” band in the low
mass region. It is defined as the combination of coupling and masses needed for to explain
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Figure 25 – Future sensitivity at 90% C.L. in the mZ
Õ ≠gZ

Õ plane for the Lµ≠L· model for
the ‹BDX-DRIFT detector (left) exploiting CS2 at two di�erent pressures,
and the various detectors described in the text at the ESS (right). The dark
green shaded areas are excluded at 95% C.L. by BaBar [107], ATLAS [108,
109], CMS [110], CCFR [111, 112] and at 90% C.L. by Borexino [113, 114]
assuming that the Z Õ decays to muons. In the red region the model explains
at 2‡ the anomalous magnetic moment of the muon [7, 115, 116]. The yellow
band shows the region that can explain the Xenon1T excess [117] in some
specifically extended Lµ ≠ L· model [118], while the black diamonds refer to
a model [119] that explain the cosmic neutrino spectrum features observed
by IceCube [120].

the observed anomalous magnetic moment of the muon [7] in the context of this model. In
particular, they may be able to completely exclude the solution for (g ≠ 2)µ for mZ

Õ < 20
MeV.

Furthermore, it is interesting to note that in specifically extended models [118]
there is a some overlap between the region preferred by the excess of low energy electrons
observed by the Xenon1T experiment [117] (yellow band) and the (g ≠ 2)µ anomaly
(red region). Again, both are contemplated within the range of the ESS detectors, which
could probe combinations of gZ

Õ and mZ
Õ that simultaneously solve both. Finally, reference

points of a specific model [119] explaining peculiar features observed in the cosmic neutrino
spectrum by the IceCube collaboration [120](also shown in Fig. 25) are also within reach,
poising the possibility of tying the three anomalies at once with a single observation e�ort.
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9 Conclusion

This work was first motivated through a need to search for new directions for
Physics beyond the Standard Model. While it has proven time and again its consistency
and sturdiness faced with experimental tests, the puzzle of the origin of neutrino masses
has been unquestionably verified to be outside of its scope. Thus, we turned to neutrino-
related phenomena as a natural choice to try to explore signs of New Physics.

Coherent Scattering also arises as a natural focus when considering the close re-
lation to Dark Matter searches, whose properties also consist another well-established
problem beyond the current Standard Model. The relatively small interaction rates of
neutrinos and Dark Matter also push for the idea of any e�ect which may boost the cross
section of related processes, connecting to the idea of CE‹NS.

From that point, we derived the formalism to describe this type of interaction in
the Standard Model, also noting how a convenient reparametrization of the problem in
terms of relevant degrees of freedom could yield a characterization consistent with the
fundamental description in terms of quark and neutrinos interacting via a neutral current
process. Thus, we also introduced the notion of e�ective field theory.

The next logical step was to determine exactly which types of models could be
e�ciently probed by CE‹NS-dedicated experiments, relying on the description we built.
U(1) extensions to the Standard Model proved to be a simple, yet quite encompassing class
which could both be obtained in a consistent way. They were also still generic enough such
that one could match their realizations unto more complete theories in the UV description.

The selection of light Z’ realizations inside this wide class was also well-motivated
by the characteristic interaction and scales of CE‹NS, and justified the introduction of
a simplified model approach. We chose three models to study in detail, based on the
surrounding interest in the literature: (i) a universal Z Õ model in which the light spin-1
particle couples to all the SM fermions with universal strength; (ii) a model in which the
Z Õ couples to the anomaly free B ≠ L current; (iii) a model in which the Z Õ couples to the
anomaly free Lµ ≠ L· current.

With the formalism for the full description of the process both in the Standard
Model and the light Z’ models of interest in place, the only remaining need was for a
framework to connect predictions and experiments, and allow for the extraction of the
relevant parameters of the theory. Thus, we invoked the tools of statistical inference,
properly defining a systematic way to verify findings.

All these e�orts laid the ground for the application to a real-world, well-studied
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case, in order to confirm the validity of our approach. The COHERENT Liquid Argon
detector was the obvious choice, given the very complete literature surrounding it, as well
as the large collection of available data.

Once our methods were verified, we selected two di�erent experimental proposals
to establish their sensitivity with respect to the light Z’ models of interest. We proceeded
to show how to extract all the necessary quantities for the computation of event rates,
and finally obtained the projected sensitivity, analysed in a comparative manner to other
established and expected bounds. The whole work has been connected by a logical thread,
returning to the initial need to probe what lies beyond the Standard Model.

Our results were presented in Figures 22 – 25. We have shown that the ‹BDX-
DRIFT proposal presents a weaker sensitivity to the unexplored parameter space in com-
parison to the ESS proposals. Yet, it could still prove useful in the context of the com-
munity as a whole, adding another valuable experimental point to measure the A and Z
dependency of the CE‹NS cross section, as it is the only experiment to our knowledge
with Sulfur as an active target.

Other dedicated studies of nuclear uncertainties related to the form factor using
the unique high-energy flux from DUNE could also be incredibly useful, and are left as
a possible follow up to this work. The possibility also remains open for upgrades of the
design, introducing reliable track identification, to massively boost its capabilities for
future studies.

In contrast, the ESS proposals have all generally demonstrated aptitude at explor-
ing a larger portion of untested parameter space. This is particularly true for the Lµ ≠ L·

model, where our results show that the detector exploiting Xe and CsI will be able to test
the region 3 . mZ

Õ/MeV . 60, where the Z Õ is able to explain the anomalous muon mag-
netic moment measurements [7, 115, 116] and the Xenon1T excess [117, 118]. Moreover,
all the detectors at the ESS will be able to test a specific model [119] that can explain
peculiar features observed in the cosmic neutrino spectrum by IceCube [120].

All the tools and formalism derived in this work are also readily applicable to
other CE‹NS experiments, as well as Dark Matter direct detection e�orts, which might
be pursued in future work.



95

Bibliography

[1] “The quantum theory of the emission and absorption of radiation”. In: Proceedings
of the Royal Society of London. Series A, Containing Papers of a Mathematical
and Physical Character 114.767 (Mar. 1927), pp. 243–265. doi: 10.1098/rspa.
1927.0039. url: https://doi.org/10.1098/rspa.1927.0039.

[2] R.P. Feynman and A. Zee. QED: The Strange Theory of Light and Matter. Alix G.
Mautner memorial lectures. Princeton University Press, 2006. isbn: 9780691125756.
url: https://books.google.com.br/books?id=Uv-uxB0sRKEC.

[3] Serguei Chatrchyan et al. “Observation of a New Boson at a Mass of 125 GeV with
the CMS Experiment at the LHC”. In: Phys. Lett. B 716 (2012), pp. 30–61. doi:
10.1016/j.physletb.2012.08.021. arXiv: 1207.7235 [hep-ex].

[4] Georges Aad et al. “Observation of a new particle in the search for the Standard
Model Higgs boson with the ATLAS detector at the LHC”. In: Phys. Lett. B 716
(2012), pp. 1–29. doi: 10.1016/j.physletb.2012.08.020. arXiv: 1207.7214
[hep-ex].

[5] Mu-Chun Chen. “TASI 2006 Lectures on Leptogenesis”. In: Theoretical Advanced
Study Institute in Elementary Particle Physics: Exploring New Frontiers Using
Colliders and Neutrinos. Mar. 2007, pp. 123–176. arXiv: hep-ph/0703087.

[6] Anson Hook. “TASI Lectures on the Strong CP Problem and Axions”. In: PoS
TASI2018 (2019), p. 004. arXiv: 1812.02669 [hep-ph].

[7] B. Abi et al. “Measurement of the Positive Muon Anomalous Magnetic Moment
to 0.46 ppm”. In: Phys. Rev. Lett. 126.14 (2021), p. 141801. doi: 10 . 1103 /
PhysRevLett.126.141801. arXiv: 2104.03281 [hep-ex].

[8] Elena Graverini. “Flavour anomalies: a review”. In: Journal of Physics: Conference
Series 1137 (Jan. 2019), p. 012025. issn: 1742-6596. doi: 10.1088/1742-6596/
1137/1/012025. url: http://dx.doi.org/10.1088/1742-6596/1137/1/012025.

[9] Roel Aaij et al. “Test of lepton universality in beauty-quark decays”. In: (Mar.
2021). arXiv: 2103.11769 [hep-ex].

[10] Sz. Borsanyi et al. “Leading hadronic contribution to the muon magnetic moment
from lattice QCD”. In: Nature 593.7857 (2021), pp. 51–55. doi: 10.1038/s41586-
021-03418-1. arXiv: 2002.12347 [hep-lat].

[11] Stephen P. Martin. “A Supersymmetry primer”. In: Adv. Ser. Direct. High Energy
Phys. 18 (1998). Ed. by Gordon L. Kane, pp. 1–98. doi: 10.1142/9789812839657_
0001. arXiv: hep-ph/9709356.

https://doi.org/10.1098/rspa.1927.0039
https://doi.org/10.1098/rspa.1927.0039
https://doi.org/10.1098/rspa.1927.0039
https://books.google.com.br/books?id=Uv-uxB0sRKEC
https://doi.org/10.1016/j.physletb.2012.08.021
https://arxiv.org/abs/1207.7235
https://doi.org/10.1016/j.physletb.2012.08.020
https://arxiv.org/abs/1207.7214
https://arxiv.org/abs/1207.7214
https://arxiv.org/abs/hep-ph/0703087
https://arxiv.org/abs/1812.02669
https://doi.org/10.1103/PhysRevLett.126.141801
https://doi.org/10.1103/PhysRevLett.126.141801
https://arxiv.org/abs/2104.03281
https://doi.org/10.1088/1742-6596/1137/1/012025
https://doi.org/10.1088/1742-6596/1137/1/012025
http://dx.doi.org/10.1088/1742-6596/1137/1/012025
https://arxiv.org/abs/2103.11769
https://doi.org/10.1038/s41586-021-03418-1
https://doi.org/10.1038/s41586-021-03418-1
https://arxiv.org/abs/2002.12347
https://doi.org/10.1142/9789812839657_0001
https://doi.org/10.1142/9789812839657_0001
https://arxiv.org/abs/hep-ph/9709356


Bibliography 96

[12] Keith A. Ulmer. “Supersymmetry: Experimental Status”. In: 3rd Large Hadron
Collider Physics Conference. 2015, pp. 180–191. arXiv: 1601.03774 [hep-ex].

[13] F. Giordano. “SUSY searches at the LHC Run2”. In: Nuovo Cim. C 40.1 (2017),
p. 2. doi: 10.1393/ncc/i2017-17002-1.

[14] Takaaki Kajita. Nobel Prize Lecture - Discovery of Atmospheric Neutrino Oscil-
lations. https://nobelprize.org/uploads/2018/06/kajita-lecture.pdf.
Accessed: 2022-02-01. 2015.

[15] Arthur B. McDonald. Nobel Prize Lecture - The Sudbury Neutrino Observatory:
Observation of Flavor Change for Solar Neutrinos. https://www.nobelprize.
org/uploads/2018/06/mcdonald-lecture.pdf. Accessed: 2022-02-01. 2015.

[16] Leonard S. Kisslinger. “Review of neutrino oscillations with sterile and active
neutrinos”. In: International Journal of Modern Physics A 31.23 (Aug. 2016),
p. 1630037. issn: 1793-656X. doi: 10 . 1142 / s0217751x16300374. url: http :
//dx.doi.org/10.1142/S0217751X16300374.

[17] Andre de Gouvea. “TASI lectures on neutrino physics”. In: Theoretical Advanced
Study Institute in Elementary Particle Physics: Physics in D = 4. Nov. 2004,
pp. 197–258. arXiv: hep-ph/0411274.

[18] Fritz Zwicky. “On the Masses of Nebulae and of Clusters of Nebulae”. In: The
Astrophysical Journal 86 (1937), p. 217.

[19] V.C. Rubin, N. Thonnard, and Jr. Ford W.K. “Rotational properties of 21 SC
galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/
to UGC 2885 /R = 122 kpc/”. In: Astrophys. J. 238 (1980), p. 471. doi: 10.1086/
158003.

[20] Maxim Markevitch et al. “Direct constraints on the dark matter self-interaction
cross section from the merging galaxy cluster 1E 0657–56”. In: The Astrophysical
Journal 606.2 (2004), p. 819.

[21] Pablo Villanueva-Domingo, Olga Mena, and Sergio Palomares-Ruiz. “A Brief Re-
view on Primordial Black Holes as Dark Matter”. In: Frontiers in Astronomy and
Space Sciences 8 (May 2021). issn: 2296-987X. doi: 10.3389/fspas.2021.681084.
url: http://dx.doi.org/10.3389/fspas.2021.681084.

[22] KIM GRIEST. “The Search for the Dark Matter: WIMPs and MACHOs”. In:
Annals of the New York Academy of Sciences 688.1 (June 1993), pp. 390–407.
issn: 0077-8923. doi: 10.1111/j.1749- 6632.1993.tb43912.x. url: http:
//dx.doi.org/10.1111/j.1749-6632.1993.tb43912.x.

[23] R. H. Sanders. “A historical perspective on modified Newtonian dynamics”. In:
Can. J. Phys. 93.2 (2015), pp. 126–138. doi: 10.1139/cjp-2014-0206. arXiv:
1404.0531 [physics.hist-ph].

https://arxiv.org/abs/1601.03774
https://doi.org/10.1393/ncc/i2017-17002-1
https://nobelprize.org/uploads/2018/06/kajita-lecture.pdf
https://www.nobelprize.org/uploads/2018/06/mcdonald-lecture.pdf
https://www.nobelprize.org/uploads/2018/06/mcdonald-lecture.pdf
https://doi.org/10.1142/s0217751x16300374
http://dx.doi.org/10.1142/S0217751X16300374
http://dx.doi.org/10.1142/S0217751X16300374
https://arxiv.org/abs/hep-ph/0411274
https://doi.org/10.1086/158003
https://doi.org/10.1086/158003
https://doi.org/10.3389/fspas.2021.681084
http://dx.doi.org/10.3389/fspas.2021.681084
https://doi.org/10.1111/j.1749-6632.1993.tb43912.x
http://dx.doi.org/10.1111/j.1749-6632.1993.tb43912.x
http://dx.doi.org/10.1111/j.1749-6632.1993.tb43912.x
https://doi.org/10.1139/cjp-2014-0206
https://arxiv.org/abs/1404.0531


Bibliography 97

[24] Albert Petrov. “Introduction to Modified Gravity”. In: SpringerBriefs in Physics
(2020). issn: 2191-5431. doi: 10.1007/978-3-030-52862-1. url: http://dx.
doi.org/10.1007/978-3-030-52862-1.

[25] Nabila Aghanim et al. “Planck 2018 results-VI. Cosmological parameters”. In:
Astronomy & Astrophysics 641 (2020), A6.

[26] Wayne Hu and Scott Dodelson. “Cosmic Microwave Background Anisotropies”.
In: Annual Review of Astronomy and Astrophysics 40.1 (Sept. 2002), pp. 171–
216. issn: 1545-4282. doi: 10.1146/annurev.astro.40.060401.093926. url:
http://dx.doi.org/10.1146/annurev.astro.40.060401.093926.

[27] Joel R. Primack. Dark Matter and Structure Formation in the Universe. 1997.
arXiv: astro-ph/9707285 [astro-ph].

[28] Tongyan Lin. TASI lectures on dark matter models and direct detection. 2019.
arXiv: 1904.07915 [hep-ph].

[29] Yonit Hochberg et al. “Mechanism for Thermal Relic Dark Matter of Strongly
Interacting Massive Particles”. In: Phys. Rev. Lett. 113 (2014), p. 171301. doi:
10.1103/PhysRevLett.113.171301. arXiv: 1402.5143 [hep-ph].

[30] A. Arbey and F. Mahmoudi. “Dark matter and the early Universe: a review”. In:
Prog. Part. Nucl. Phys. 119 (2021), p. 103865. doi: 10.1016/j.ppnp.2021.
103865. arXiv: 2104.11488 [hep-ph].

[31] E. Armengaud et al. “Searching for low-mass dark matter particles with a massive
Ge bolometer operated above-ground”. In: Phys. Rev. D 99.8 (2019), p. 082003.
doi: 10.1103/PhysRevD.99.082003. arXiv: 1901.03588 [astro-ph.GA].

[32] K. Abe et al. “A direct dark matter search in XMASS-I”. In: Phys. Lett. B 789
(2019), pp. 45–53. doi: 10.1016/j.physletb.2018.10.070. arXiv: 1804.02180
[astro-ph.CO].

[33] D. Yu. Akimov et al. “WIMP-nucleon cross-section results from the second science
run of ZEPLIN-III”. In: Phys. Lett. B 709 (2012), pp. 14–20. doi: 10.1016/j.
physletb.2012.01.064. arXiv: 1110.4769 [astro-ph.CO].

[34] E. Aprile et al. “Light Dark Matter Search with Ionization Signals in XENON1T”.
In: Phys. Rev. Lett. 123.25 (2019), p. 251801. doi: 10.1103/PhysRevLett.123.
251801. arXiv: 1907.11485 [hep-ex].

[35] A. H. Abdelhameed et al. “First results from the CRESST-III low-mass dark matter
program”. In: Phys. Rev. D 100.10 (2019), p. 102002. doi: 10.1103/PhysRevD.
100.102002. arXiv: 1904.00498 [astro-ph.CO].

https://doi.org/10.1007/978-3-030-52862-1
http://dx.doi.org/10.1007/978-3-030-52862-1
http://dx.doi.org/10.1007/978-3-030-52862-1
https://doi.org/10.1146/annurev.astro.40.060401.093926
http://dx.doi.org/10.1146/annurev.astro.40.060401.093926
https://arxiv.org/abs/astro-ph/9707285
https://arxiv.org/abs/1904.07915
https://doi.org/10.1103/PhysRevLett.113.171301
https://arxiv.org/abs/1402.5143
https://doi.org/10.1016/j.ppnp.2021.103865
https://doi.org/10.1016/j.ppnp.2021.103865
https://arxiv.org/abs/2104.11488
https://doi.org/10.1103/PhysRevD.99.082003
https://arxiv.org/abs/1901.03588
https://doi.org/10.1016/j.physletb.2018.10.070
https://arxiv.org/abs/1804.02180
https://arxiv.org/abs/1804.02180
https://doi.org/10.1016/j.physletb.2012.01.064
https://doi.org/10.1016/j.physletb.2012.01.064
https://arxiv.org/abs/1110.4769
https://doi.org/10.1103/PhysRevLett.123.251801
https://doi.org/10.1103/PhysRevLett.123.251801
https://arxiv.org/abs/1907.11485
https://doi.org/10.1103/PhysRevD.100.102002
https://doi.org/10.1103/PhysRevD.100.102002
https://arxiv.org/abs/1904.00498


Bibliography 98

[36] Xiangyi Cui et al. “Dark Matter Results From 54-Ton-Day Exposure of PandaX-
II Experiment”. In: Phys. Rev. Lett. 119.18 (2017), p. 181302. doi: 10.1103/
PhysRevLett.119.181302. arXiv: 1708.06917 [astro-ph.CO].

[37] I. Alkhatib et al. “Light Dark Matter Search with a High-Resolution Athermal
Phonon Detector Operated Above Ground”. In: Phys. Rev. Lett. 127 (2021), p. 061801.
doi: 10.1103/PhysRevLett.127.061801. arXiv: 2007.14289 [hep-ex].

[38] F. Ruppin et al. “Complementarity of dark matter detectors in light of the neutrino
background”. In: Phys. Rev. D 90.8 (2014), p. 083510. doi: 10.1103/PhysRevD.
90.083510. arXiv: 1408.3581 [hep-ph].

[39] Daniel Z. Freedman, David N. Schramm, and David L. Tubbs. “The Weak Neutral
Current and Its E�ects in Stellar Collapse”. In: Ann. Rev. Nucl. Part. Sci. 27
(1977), pp. 167–207. doi: 10.1146/annurev.ns.27.120177.001123.

[40] A. Liam Fitzpatrick et al. “The e�ective field theory of dark matter direct de-
tection”. In: Journal of Cosmology and Astroparticle Physics 2013.02 (Feb. 2013),
pp. 004–004. issn: 1475-7516. doi: 10.1088/1475- 7516/2013/02/004. url:
http://dx.doi.org/10.1088/1475-7516/2013/02/004.

[41] Eugenio Del Nobile. “Appendiciario – A hands-on manual on the theory of direct
Dark Matter detection”. In: (Apr. 2021). arXiv: 2104.12785 [hep-ph].

[42] Martin Hoferichter, Javier Menéndez, and Achim Schwenk. “Coherent elastic neutrino-
nucleus scattering: EFT analysis and nuclear responses”. In: Physical Review D
102.7 (Oct. 2020). issn: 2470-0029. doi: 10.1103/physrevd.102.074018. url:
http://dx.doi.org/10.1103/PhysRevD.102.074018.

[43] Richard H. Helm. “Inelastic and Elastic Scattering of 187-Mev Electrons from
Selected Even-Even Nuclei”. In: Phys. Rev. 104 (5 Dec. 1956), pp. 1466–1475. doi:
10.1103/PhysRev.104.1466. url: https://link.aps.org/doi/10.1103/
PhysRev.104.1466.

[44] M. Cadeddu et al. “Physics results from the first COHERENT observation of
coherent elastic neutrino-nucleus scattering in argon and their combination with
cesium-iodide data”. In: Phys. Rev. D 102.1 (2020), p. 015030. doi: 10.1103/
PhysRevD.102.015030. arXiv: 2005.01645 [hep-ph].

[45] I. Angeli and K. P. Marinova. “Table of experimental nuclear ground state charge
radii: An update”. In: Atom. Data Nucl. Data Tabl. 99.1 (2013), pp. 69–95. doi:
10.1016/j.adt.2011.12.006.

[46] Daniel Z. Freedman. “Coherent Neutrino Nucleus Scattering as a Probe of the
Weak Neutral Current”. In: Phys. Rev. D 9 (1974), pp. 1389–1392. doi: 10.1103/
PhysRevD.9.1389.

https://doi.org/10.1103/PhysRevLett.119.181302
https://doi.org/10.1103/PhysRevLett.119.181302
https://arxiv.org/abs/1708.06917
https://doi.org/10.1103/PhysRevLett.127.061801
https://arxiv.org/abs/2007.14289
https://doi.org/10.1103/PhysRevD.90.083510
https://doi.org/10.1103/PhysRevD.90.083510
https://arxiv.org/abs/1408.3581
https://doi.org/10.1146/annurev.ns.27.120177.001123
https://doi.org/10.1088/1475-7516/2013/02/004
http://dx.doi.org/10.1088/1475-7516/2013/02/004
https://arxiv.org/abs/2104.12785
https://doi.org/10.1103/physrevd.102.074018
http://dx.doi.org/10.1103/PhysRevD.102.074018
https://doi.org/10.1103/PhysRev.104.1466
https://link.aps.org/doi/10.1103/PhysRev.104.1466
https://link.aps.org/doi/10.1103/PhysRev.104.1466
https://doi.org/10.1103/PhysRevD.102.015030
https://doi.org/10.1103/PhysRevD.102.015030
https://arxiv.org/abs/2005.01645
https://doi.org/10.1016/j.adt.2011.12.006
https://doi.org/10.1103/PhysRevD.9.1389
https://doi.org/10.1103/PhysRevD.9.1389


Bibliography 99

[47] D. Akimov et al. “Observation of Coherent Elastic Neutrino-Nucleus Scattering”.
In: Science 357.6356 (2017), pp. 1123–1126. doi: 10.1126/science.aao0990.
arXiv: 1708.01294 [nucl-ex].

[48] D. Akimov et al. “COHERENT Collaboration data release from the first detection
of coherent elastic neutrino-nucleus scattering on argon”. In: (June 2020). doi:
10.5281/zenodo.3903810. arXiv: 2006.12659 [nucl-ex].

[49] M. Cadeddu et al. “Physics results from the first COHERENT observation of
coherent elastic neutrino-nucleus scattering in argon and their combination with
cesium-iodide data”. In: Physical Review D 102.1 (July 2020). issn: 2470-0029.
doi: 10.1103/physrevd.102.015030. url: http://dx.doi.org/10.1103/
PhysRevD.102.015030.

[50] D. Adhikari et al. “Accurate Determination of the Neutron Skin Thickness of
208Pb through Parity-Violation in Electron Scattering”. In: Phys. Rev. Lett. 126.17
(2021), p. 172502. doi: 10.1103/PhysRevLett.126.172502. arXiv: 2102.10767
[nucl-ex].

[51] Louis E. Strigari. “Neutrino Coherent Scattering Rates at Direct Dark Matter
Detectors”. In: New J. Phys. 11 (2009), p. 105011. doi: 10.1088/1367-2630/11/
10/105011. arXiv: 0903.3630 [astro-ph.CO].

[52] Roni Harnik, Joachim Kopp, and Pedro A. N. Machado. “Exploring nu Signals
in Dark Matter Detectors”. In: JCAP 07 (2012), p. 026. doi: 10.1088/1475-
7516/2012/07/026. arXiv: 1202.6073 [hep-ph].

[53] Enrico Bertuzzo et al. “Dark Matter and Exotic Neutrino Interactions in Direct
Detection Searches”. In: JHEP 04 (2017), p. 073. doi: 10.1007/JHEP04(2017)073.
arXiv: 1701.07443 [hep-ph].

[54] M. C. Gonzalez-Garcia et al. “Neutrino Discovery Limit of Dark Matter Direct
Detection Experiments in the Presence of Non-Standard Interactions”. In: JHEP
07 (2018), p. 019. doi: 10.1007/JHEP07(2018)019. arXiv: 1803.03650 [hep-ph].

[55] C. Bœhm et al. “How high is the neutrino floor?” In: JCAP 01 (2019), p. 043. doi:
10.1088/1475-7516/2019/01/043. arXiv: 1809.06385 [hep-ph].

[56] M. Cadeddu et al. “Constraints on light vector mediators through coherent elastic
neutrino nucleus scattering data from COHERENT”. In: JHEP 01 (2021), p. 116.
doi: 10.1007/JHEP01(2021)116. arXiv: 2008.05022 [hep-ph].

[57] Riccardo Penco. “An Introduction to E�ective Field Theories”. In: (June 2020).
arXiv: 2006.16285 [hep-th].

https://doi.org/10.1126/science.aao0990
https://arxiv.org/abs/1708.01294
https://doi.org/10.5281/zenodo.3903810
https://arxiv.org/abs/2006.12659
https://doi.org/10.1103/physrevd.102.015030
http://dx.doi.org/10.1103/PhysRevD.102.015030
http://dx.doi.org/10.1103/PhysRevD.102.015030
https://doi.org/10.1103/PhysRevLett.126.172502
https://arxiv.org/abs/2102.10767
https://arxiv.org/abs/2102.10767
https://doi.org/10.1088/1367-2630/11/10/105011
https://doi.org/10.1088/1367-2630/11/10/105011
https://arxiv.org/abs/0903.3630
https://doi.org/10.1088/1475-7516/2012/07/026
https://doi.org/10.1088/1475-7516/2012/07/026
https://arxiv.org/abs/1202.6073
https://doi.org/10.1007/JHEP04(2017)073
https://arxiv.org/abs/1701.07443
https://doi.org/10.1007/JHEP07(2018)019
https://arxiv.org/abs/1803.03650
https://doi.org/10.1088/1475-7516/2019/01/043
https://arxiv.org/abs/1809.06385
https://doi.org/10.1007/JHEP01(2021)116
https://arxiv.org/abs/2008.05022
https://arxiv.org/abs/2006.16285


Bibliography 100

[58] Davi B. Costa, Bogdan A. Dobrescu, and Patrick J. Fox. “General Solution to the
U(1) Anomaly Equations”. In: Physical Review Letters 123.15 (Oct. 2019). issn:
1079-7114. doi: 10.1103/physrevlett.123.151601. url: http://dx.doi.org/
10.1103/PhysRevLett.123.151601.

[59] Davi B. Costa. “Anomaly-free U(1)m extensions of the Standard Model”. In: Phys-
ical Review D 102.11 (Dec. 2020). issn: 2470-0029. doi: 10.1103/physrevd.102.
115006. url: http://dx.doi.org/10.1103/PhysRevD.102.115006.

[60] Neutrino Non-Standard Interactions: A Status Report. Vol. 2. 2019, p. 001. doi:
10.21468/SciPostPhysProc.2.001. arXiv: 1907.00991 [hep-ph].

[61] M. Atzori Corona et al. “Probing light mediators and (g ≠ 2)µ through detection
of coherent elastic neutrino nucleus scattering at COHERENT”. In: (Feb. 2022).
arXiv: 2202.11002 [hep-ph].

[62] D. Baxter et al. “Coherent Elastic Neutrino-Nucleus Scattering at the European
Spallation Source”. In: JHEP 02 (2020), p. 123. doi: 10.1007/JHEP02(2020)123.
arXiv: 1911.00762 [physics.ins-det].

[63] Kyle Cranmer. Practical Statistics for the LHC. 2015. arXiv: 1503.07622.

[64] S. S. Wilks. “The Large-Sample Distribution of the Likelihood Ratio for Testing
Composite Hypotheses”. In: Annals Math. Statist. 9.1 (1938), pp. 60–62. doi: 10.
1214/aoms/1177732360.

[65] D. Akimov et al. “Measurement of the Coherent Elastic Neutrino-Nucleus Scat-
tering Cross Section on CsI by COHERENT”. In: (Oct. 2021). arXiv: 2110.07730
[hep-ex].

[66] D. Akimov et al. COHERENT Collaboration data release from the first detection
of coherent elastic neutrino-nucleus scattering on argon. Version 1.0. Zenodo, June
2020. doi: 10.5281/zenodo.3903810. url: https://doi.org/10.5281/zenodo.
3903810.

[67] Ben Jones. Introduction to Scintilation Light in Liquid Argon. Presented at the Liq-
uid Argon TPC R&D Workshop (LArTPC14). July 2014. url: https://indico.
fnal.gov/event/8381/contributions/107078/attachments/69965/83895/
LArTPCWorkshopScintLight.pdf.

[68] C Amsler et al. “Luminescence quenching of the triplet excimer state by air
traces in gaseous argon”. In: Journal of Instrumentation 3.02 (Feb. 2008), P02001–
P02001. issn: 1748-0221. doi: 10.1088/1748-0221/3/02/p02001. url: http:
//dx.doi.org/10.1088/1748-0221/3/02/P02001.

https://doi.org/10.1103/physrevlett.123.151601
http://dx.doi.org/10.1103/PhysRevLett.123.151601
http://dx.doi.org/10.1103/PhysRevLett.123.151601
https://doi.org/10.1103/physrevd.102.115006
https://doi.org/10.1103/physrevd.102.115006
http://dx.doi.org/10.1103/PhysRevD.102.115006
https://doi.org/10.21468/SciPostPhysProc.2.001
https://arxiv.org/abs/1907.00991
https://arxiv.org/abs/2202.11002
https://doi.org/10.1007/JHEP02(2020)123
https://arxiv.org/abs/1911.00762
https://arxiv.org/abs/1503.07622
https://doi.org/10.1214/aoms/1177732360
https://doi.org/10.1214/aoms/1177732360
https://arxiv.org/abs/2110.07730
https://arxiv.org/abs/2110.07730
https://doi.org/10.5281/zenodo.3903810
https://doi.org/10.5281/zenodo.3903810
https://doi.org/10.5281/zenodo.3903810
https://indico.fnal.gov/event/8381/contributions/107078/attachments/69965/83895/LArTPCWorkshopScintLight.pdf
https://indico.fnal.gov/event/8381/contributions/107078/attachments/69965/83895/LArTPCWorkshopScintLight.pdf
https://indico.fnal.gov/event/8381/contributions/107078/attachments/69965/83895/LArTPCWorkshopScintLight.pdf
https://doi.org/10.1088/1748-0221/3/02/p02001
http://dx.doi.org/10.1088/1748-0221/3/02/P02001
http://dx.doi.org/10.1088/1748-0221/3/02/P02001


Bibliography 101

[69] Jacob Zettlemoyer. Results of a CEvNS Search with the CENNS-10 Liquid Ar-
gon Detector. Presented at the 2019 Magnificent CEvNS Workshop. Nov. 2019.
url: https : / / indico . cern . ch / event / 844613 / contributions / 3607503 /
attachments/1942028/3220533/JCZCENNS10M7s2019EngRunFinalv2.pdf.

[70] D. Aristizabal Sierra et al. “Coherent elastic neutrino-nucleus scattering with the
‹BDX-DRIFT directional detector at next generation neutrino facilities”. In: Phys.
Rev. D 104.3 (2021), p. 033004. doi: 10.1103/PhysRevD.104.033004. arXiv:
2103.10857 [hep-ph].

[71] D. P. Snowden-I�t, C. J. Marto�, and J. M. Burwell. “Low pressure negative ion
time projection chamber for dark matter search”. In: Phys. Rev. D 61 (10 Apr.
2000), p. 101301. doi: 10.1103/PhysRevD.61.101301. url: https://link.aps.
org/doi/10.1103/PhysRevD.61.101301.

[72] Babak Abi et al. “Deep Underground Neutrino Experiment (DUNE), Far Detector
Technical Design Report, Volume II: DUNE Physics”. In: (Feb. 2020). arXiv: 2002.
03005 [hep-ex].

[73] D. P. Snowden-I�t et al. “Directional light-WIMP time-projection-chamber detec-
tor for electron beam-dump experiments”. In: Physical Review D 99.6 (Mar. 2019).
issn: 2470-0029. doi: 10.1103/physrevd.99.061301. url: http://dx.doi.org/
10.1103/PhysRevD.99.061301.

[74] D. P. Snowden-I�t and J.-L. Gauvreau. “High precision measurements of carbon
disulfide negative ion mobility and di�usion”. In: Review of Scientific Instruments
84.5 (May 2013), p. 053304. issn: 1089-7623. doi: 10.1063/1.4803004. url:
http://dx.doi.org/10.1063/1.4803004.

[75] J. B. R. Battat et al. “First background-free limit from a directional dark matter
experiment: results from a fully fiducialised DRIFT detector”. In: Phys. Dark Univ.
9-10 (2015), pp. 1–7. doi: 10.1016/j.dark.2015.06.001. arXiv: 1410.7821
[hep-ex].

[76] J.B.R. Battat et al. “Low threshold results and limits from the DRIFT directional
dark matter detector”. In: Astroparticle Physics 91 (May 2017), pp. 65–74. issn:
0927-6505. doi: 10.1016/j.astropartphys.2017.03.007. url: http://dx.doi.
org/10.1016/j.astropartphys.2017.03.007.

[77] Ivan Esteban. European Spallation Source: a future for Coherent Neutrino Nucleus
Scattering. 2021. arXiv: 2105.04669 [hep-ph].

[78] R. L. Burman and P. Plischke. “Neutrino fluxes from a high-intensity spallation
neutron facility”. In: Nucl. Instrum. Meth. A 398 (1997), pp. 147–156. doi: 10.
1016/S0168-9002(97)00821-8.

https://indico.cern.ch/event/844613/contributions/3607503/attachments/1942028/3220533/JCZCENNS10M7s2019EngRunFinalv2.pdf
https://indico.cern.ch/event/844613/contributions/3607503/attachments/1942028/3220533/JCZCENNS10M7s2019EngRunFinalv2.pdf
https://doi.org/10.1103/PhysRevD.104.033004
https://arxiv.org/abs/2103.10857
https://doi.org/10.1103/PhysRevD.61.101301
https://link.aps.org/doi/10.1103/PhysRevD.61.101301
https://link.aps.org/doi/10.1103/PhysRevD.61.101301
https://arxiv.org/abs/2002.03005
https://arxiv.org/abs/2002.03005
https://doi.org/10.1103/physrevd.99.061301
http://dx.doi.org/10.1103/PhysRevD.99.061301
http://dx.doi.org/10.1103/PhysRevD.99.061301
https://doi.org/10.1063/1.4803004
http://dx.doi.org/10.1063/1.4803004
https://doi.org/10.1016/j.dark.2015.06.001
https://arxiv.org/abs/1410.7821
https://arxiv.org/abs/1410.7821
https://doi.org/10.1016/j.astropartphys.2017.03.007
http://dx.doi.org/10.1016/j.astropartphys.2017.03.007
http://dx.doi.org/10.1016/j.astropartphys.2017.03.007
https://arxiv.org/abs/2105.04669
https://doi.org/10.1016/S0168-9002(97)00821-8
https://doi.org/10.1016/S0168-9002(97)00821-8


Bibliography 102

[79] Alexis Aguilar-Arevalo et al. “Search for light mediators in the low-energy data
of the CONNIE reactor neutrino experiment”. In: JHEP 04 (2020), p. 054. doi:
10.1007/JHEP04(2020)054. arXiv: 1910.04951 [hep-ex].

[80] Liron Barak et al. “SENSEI: Direct-Detection Results on sub-GeV Dark Matter
from a New Skipper CCD”. In: Physical Review Letters 125.17 (Oct. 2020). issn:
1079-7114. doi: 10.1103/physrevlett.125.171802. url: http://dx.doi.org/
10.1103/PhysRevLett.125.171802.

[81] A. Aguilar-Arevalo et al. “Search for low-mass WIMPs in a 0.6 kg day exposure
of the DAMIC experiment at SNOLAB”. In: Phys. Rev. D 94.8 (2016), p. 082006.
doi: 10.1103/PhysRevD.94.082006. arXiv: 1607.07410 [astro-ph.CO].

[82] J. J. Gomez-Cadenas. “Status and prospects of the NEXT experiment for neu-
trinoless double beta decay searches”. In: 54th Rencontres de Moriond on Elec-
troweak Interactions and Unified Theories. 2019, pp. 201–206. arXiv: 1906.01743
[hep-ex].

[83] Frank Edzards et al. “Surface Characterization of P-Type Point Contact Ger-
manium Detectors”. In: Particles 4.4 (Oct. 2021), pp. 489–511. issn: 2571-712X.
doi: 10 . 3390 / particles4040036. url: http : / / dx . doi . org / 10 . 3390 /
particles4040036.

[84] C. Amole et al. “Dark Matter Search Results from the Complete Exposure of the
PICO-60 C3F8 Bubble Chamber”. In: Phys. Rev. D 100.2 (2019), p. 022001. doi:
10.1103/PhysRevD.100.022001. arXiv: 1902.04031 [astro-ph.CO].

[85] Peter B. Denton and Julia Gehrlein. “A statistical analysis of the COHERENT
data and applications to new physics”. In: Journal of High Energy Physics 2021.4
(Apr. 2021). issn: 1029-8479. doi: 10.1007/jhep04(2021)266. url: http://dx.
doi.org/10.1007/JHEP04(2021)266.

[86] G. Fernandez-Moroni et al. “The physics potential of a reactor neutrino experiment
with Skipper-CCDs: Searching for new physics with light mediators”. In: (Aug.
2021). arXiv: 2108.07310 [hep-ph].

[87] J. P. Lees et al. “Search for Invisible Decays of a Dark Photon Produced in e+e≠

Collisions at BaBar”. In: Phys. Rev. Lett. 119.13 (2017), p. 131804. doi: 10.1103/
PhysRevLett.119.131804. arXiv: 1702.03327 [hep-ex].

[88] D. Banerjee et al. “Search for vector mediator of Dark Matter production in in-
visible decay mode”. In: Phys. Rev. D 97.7 (2018), p. 072002. doi: 10.1103/
PhysRevD.97.072002. arXiv: 1710.00971 [hep-ex].

[89] D. Banerjee et al. “Dark matter search in missing energy events with NA64”. In:
Phys. Rev. Lett. 123.12 (2019), p. 121801. doi: 10 . 1103 / PhysRevLett . 123 .
121801. arXiv: 1906.00176 [hep-ex].

https://doi.org/10.1007/JHEP04(2020)054
https://arxiv.org/abs/1910.04951
https://doi.org/10.1103/physrevlett.125.171802
http://dx.doi.org/10.1103/PhysRevLett.125.171802
http://dx.doi.org/10.1103/PhysRevLett.125.171802
https://doi.org/10.1103/PhysRevD.94.082006
https://arxiv.org/abs/1607.07410
https://arxiv.org/abs/1906.01743
https://arxiv.org/abs/1906.01743
https://doi.org/10.3390/particles4040036
http://dx.doi.org/10.3390/particles4040036
http://dx.doi.org/10.3390/particles4040036
https://doi.org/10.1103/PhysRevD.100.022001
https://arxiv.org/abs/1902.04031
https://doi.org/10.1007/jhep04(2021)266
http://dx.doi.org/10.1007/JHEP04(2021)266
http://dx.doi.org/10.1007/JHEP04(2021)266
https://arxiv.org/abs/2108.07310
https://doi.org/10.1103/PhysRevLett.119.131804
https://doi.org/10.1103/PhysRevLett.119.131804
https://arxiv.org/abs/1702.03327
https://doi.org/10.1103/PhysRevD.97.072002
https://doi.org/10.1103/PhysRevD.97.072002
https://arxiv.org/abs/1710.00971
https://doi.org/10.1103/PhysRevLett.123.121801
https://doi.org/10.1103/PhysRevLett.123.121801
https://arxiv.org/abs/1906.00176


Bibliography 103

[90] The vIOLETA collaboration website. Link. url: https://www.violetaexperiment.
com/.

[91] Dario Rodrigues et al. vIOLETA: Neutrino Interaction Observation with a Low
Energy Threshold Array. Link. July 2020. url: https://nusoft.fnal.gov/
nova/nu2020postersession/pdf/posterPDF-521.pdf.

[92] Emiliano Pozzi et al. Short baseline neutrino program in Argentina. Link. July 2020.
url: https://nusoft.fnal.gov/nova/nu2020postersession/pdf/posterPDF-
523.pdf.

[93] Ivan Jesus Martinez-Soler et al. A first study of the physics potential of a reactor
neutrino experiment with Skipper-CCDs. Link. July 2020. url: https://nusoft.
fnal.gov/nova/nu2020postersession/pdf/posterPDF-508.pdf.

[94] Guillermo Fernandez-Moroni et al. “The physics potential of a reactor neutrino
experiment with Skipper CCDs: Measuring the weak mixing angle”. In: JHEP 03
(2021), p. 186. doi: 10.1007/JHEP03(2021)186. arXiv: 2009.10741 [hep-ph].

[95] D. Banerjee et al. “Improved limits on a hypothetical X(16.7) boson and a dark
photon decaying into e+e≠ pairs”. In: Phys. Rev. D 101.7 (2020), p. 071101. doi:
10.1103/PhysRevD.101.071101. arXiv: 1912.11389 [hep-ex].

[96] E. M. Riordan et al. “Search for short-lived axions in an electron-beam-dump
experiment”. In: Phys. Rev. Lett. 59 (7 Aug. 1987), pp. 755–758. doi: 10.1103/
PhysRevLett.59.755. url: https://link.aps.org/doi/10.1103/PhysRevLett.
59.755.

[97] M. Davier and H. Nguyen Ngoc. “An Unambiguous Search for a Light Higgs Bo-
son”. In: Phys. Lett. B 229 (1989), pp. 150–155. doi: 10.1016/0370-2693(89)
90174-3.

[98] Johannes Blumlein and Jurgen Brunner. “New Exclusion Limits for Dark Gauge
Forces from Beam-Dump Data”. In: Phys. Lett. B 701 (2011), pp. 155–159. doi:
10.1016/j.physletb.2011.05.046. arXiv: 1104.2747 [hep-ex].

[99] J. R. Batley et al. “Search for the dark photon in fi0 decays”. In: Phys. Lett. B 746
(2015), pp. 178–185. doi: 10.1016/j.physletb.2015.04.068. arXiv: 1504.00607
[hep-ex].

[100] F. Archilli et al. “Search for a vector gauge boson in „ meson decays with the
KLOE detector”. In: Phys. Lett. B 706 (2012), pp. 251–255. doi: 10.1016/j.
physletb.2011.11.033. arXiv: 1110.0411 [hep-ex].

[101] D. Babusci et al. “Limit on the production of a light vector gauge boson in phi
meson decays with the KLOE detector”. In: Phys. Lett. B 720 (2013), pp. 111–115.
doi: 10.1016/j.physletb.2013.01.067. arXiv: 1210.3927 [hep-ex].

https://www.violetaexperiment.com/
https://www.violetaexperiment.com/
https://www.violetaexperiment.com/
https://nusoft.fnal.gov/nova/nu2020postersession/pdf/posterPDF-521.pdf
https://nusoft.fnal.gov/nova/nu2020postersession/pdf/posterPDF-521.pdf
https://nusoft.fnal.gov/nova/nu2020postersession/pdf/posterPDF-521.pdf
https://nusoft.fnal.gov/nova/nu2020postersession/pdf/posterPDF-523.pdf
https://nusoft.fnal.gov/nova/nu2020postersession/pdf/posterPDF-523.pdf
https://nusoft.fnal.gov/nova/nu2020postersession/pdf/posterPDF-523.pdf
https://nusoft.fnal.gov/nova/nu2020postersession/pdf/posterPDF-508.pdf
https://nusoft.fnal.gov/nova/nu2020postersession/pdf/posterPDF-508.pdf
https://nusoft.fnal.gov/nova/nu2020postersession/pdf/posterPDF-508.pdf
https://doi.org/10.1007/JHEP03(2021)186
https://arxiv.org/abs/2009.10741
https://doi.org/10.1103/PhysRevD.101.071101
https://arxiv.org/abs/1912.11389
https://doi.org/10.1103/PhysRevLett.59.755
https://doi.org/10.1103/PhysRevLett.59.755
https://link.aps.org/doi/10.1103/PhysRevLett.59.755
https://link.aps.org/doi/10.1103/PhysRevLett.59.755
https://doi.org/10.1016/0370-2693(89)90174-3
https://doi.org/10.1016/0370-2693(89)90174-3
https://doi.org/10.1016/j.physletb.2011.05.046
https://arxiv.org/abs/1104.2747
https://doi.org/10.1016/j.physletb.2015.04.068
https://arxiv.org/abs/1504.00607
https://arxiv.org/abs/1504.00607
https://doi.org/10.1016/j.physletb.2011.11.033
https://doi.org/10.1016/j.physletb.2011.11.033
https://arxiv.org/abs/1110.0411
https://doi.org/10.1016/j.physletb.2013.01.067
https://arxiv.org/abs/1210.3927


Bibliography 104

[102] J. P. Lees et al. “Search for a Dark Photon in e+e≠ Collisions at BaBar”. In: Phys.
Rev. Lett. 113.20 (2014), p. 201801. doi: 10.1103/PhysRevLett.113.201801.
arXiv: 1406.2980 [hep-ex].

[103] Roel Aaij et al. “Search for AÕ æ µ+µ≠ Decays”. In: Phys. Rev. Lett. 124.4
(2020), p. 041801. doi: 10.1103/PhysRevLett.124.041801. arXiv: 1910.06926
[hep-ex].

[104] Philip Ilten et al. “Serendipity in dark photon searches”. In: JHEP 06 (2018),
p. 004. doi: 10.1007/JHEP06(2018)004. arXiv: 1801.04847 [hep-ph].

[105] Kaustav Chakraborty et al. “Constraining general U(1) interactions from neutrino-
electron scattering measurements at DUNE near detector”. In: (Nov. 2021). arXiv:
2111.08767 [hep-ph].

[106] Patrick J. Fox et al. “LEP Shines Light on Dark Matter”. In: Phys. Rev. D
84 (2011), p. 014028. doi: 10.1103/PhysRevD.84.014028. arXiv: 1103.0240
[hep-ph].

[107] J. P. Lees et al. “Search for a muonic dark force at BABAR”. In: Phys. Rev. D
94.1 (2016), p. 011102. doi: 10.1103/PhysRevD.94.011102. arXiv: 1606.03501
[hep-ex].

[108] Wolfgang Altmannshofer et al. “Explaining dark matter and B decay anomalies
with an Lµ ≠L· model”. In: JHEP 12 (2016), p. 106. doi: 10.1007/JHEP12(2016)
106. arXiv: 1609.04026 [hep-ph].

[109] Georges Aad et al. “Measurements of Four-Lepton Production at the Z Resonance
in pp Collisions at

Ô
s =7 and 8 TeV with ATLAS”. In: Phys. Rev. Lett. 112.23

(2014), p. 231806. doi: 10.1103/PhysRevLett.112.231806. arXiv: 1403.5657
[hep-ex].

[110] Albert M Sirunyan et al. “Search for an Lµ ≠ L· gauge boson using Zæ 4µ events
in proton-proton collisions at

Ô
s = 13 TeV”. In: Phys. Lett. B 792 (2019), pp. 345–

368. doi: 10.1016/j.physletb.2019.01.072. arXiv: 1808.03684 [hep-ex].

[111] Wolfgang Altmannshofer et al. “Neutrino Trident Production: A Powerful Probe
of New Physics with Neutrino Beams”. In: Phys. Rev. Lett. 113 (2014), p. 091801.
doi: 10.1103/PhysRevLett.113.091801. arXiv: 1406.2332 [hep-ph].

[112] S. R. Mishra et al. “Neutrino tridents and W-Z interference”. In: Phys. Rev. Lett.
66 (24 June 1991), pp. 3117–3120. doi: 10.1103/PhysRevLett.66.3117. url:
https://link.aps.org/doi/10.1103/PhysRevLett.66.3117.

[113] G. Bellini et al. “Precision measurement of the 7Be solar neutrino interaction rate in
Borexino”. In: Phys. Rev. Lett. 107 (2011), p. 141302. doi: 10.1103/PhysRevLett.
107.141302. arXiv: 1104.1816 [hep-ex].

https://doi.org/10.1103/PhysRevLett.113.201801
https://arxiv.org/abs/1406.2980
https://doi.org/10.1103/PhysRevLett.124.041801
https://arxiv.org/abs/1910.06926
https://arxiv.org/abs/1910.06926
https://doi.org/10.1007/JHEP06(2018)004
https://arxiv.org/abs/1801.04847
https://arxiv.org/abs/2111.08767
https://doi.org/10.1103/PhysRevD.84.014028
https://arxiv.org/abs/1103.0240
https://arxiv.org/abs/1103.0240
https://doi.org/10.1103/PhysRevD.94.011102
https://arxiv.org/abs/1606.03501
https://arxiv.org/abs/1606.03501
https://doi.org/10.1007/JHEP12(2016)106
https://doi.org/10.1007/JHEP12(2016)106
https://arxiv.org/abs/1609.04026
https://doi.org/10.1103/PhysRevLett.112.231806
https://arxiv.org/abs/1403.5657
https://arxiv.org/abs/1403.5657
https://doi.org/10.1016/j.physletb.2019.01.072
https://arxiv.org/abs/1808.03684
https://doi.org/10.1103/PhysRevLett.113.091801
https://arxiv.org/abs/1406.2332
https://doi.org/10.1103/PhysRevLett.66.3117
https://link.aps.org/doi/10.1103/PhysRevLett.66.3117
https://doi.org/10.1103/PhysRevLett.107.141302
https://doi.org/10.1103/PhysRevLett.107.141302
https://arxiv.org/abs/1104.1816


Bibliography 105

[114] Sergei Gninenko and Dmitry Gorbunov. “Refining constraints from Borexino mea-
surements on a light Z’-boson coupled to Lµ-L· current”. In: Phys. Lett. B 823
(2021), p. 136739. doi: 10.1016/j.physletb.2021.136739. arXiv: 2007.16098
[hep-ph].

[115] G. W. Bennett et al. “Final Report of the Muon E821 Anomalous Magnetic Mo-
ment Measurement at BNL”. In: Phys. Rev. D 73 (2006), p. 072003. doi: 10.1103/
PhysRevD.73.072003. arXiv: hep-ex/0602035.

[116] T. Aoyama et al. “The anomalous magnetic moment of the muon in the Standard
Model”. In: Phys. Rept. 887 (2020), pp. 1–166. doi: 10.1016/j.physrep.2020.
07.006. arXiv: 2006.04822 [hep-ph].

[117] E. Aprile et al. “Excess electronic recoil events in XENON1T”. In: Phys. Rev. D
102.7 (2020), p. 072004. doi: 10.1103/PhysRevD.102.072004. arXiv: 2006.09721
[hep-ex].

[118] Debasish Borah et al. “Muon (g ≠ 2) and XENON1T excess with boosted dark
matter in Lµ ≠ L· model”. In: Phys. Lett. B 820 (2021), p. 136577. doi: 10.1016/
j.physletb.2021.136577. arXiv: 2104.05656 [hep-ph].

[119] Takeshi Araki et al. “MeV scale leptonic force for cosmic neutrino spectrum and
muon anomalous magnetic moment”. In: Phys. Rev. D 93.1 (2016), p. 013014. doi:
10.1103/PhysRevD.93.013014. arXiv: 1508.07471 [hep-ph].

[120] M. G. Aartsen et al. “A combined maximum-likelihood analysis of the high-energy
astrophysical neutrino flux measured with IceCube”. In: Astrophys. J. 809.1 (2015),
p. 98. doi: 10.1088/0004-637X/809/1/98. arXiv: 1507.03991 [astro-ph.HE].

https://doi.org/10.1016/j.physletb.2021.136739
https://arxiv.org/abs/2007.16098
https://arxiv.org/abs/2007.16098
https://doi.org/10.1103/PhysRevD.73.072003
https://doi.org/10.1103/PhysRevD.73.072003
https://arxiv.org/abs/hep-ex/0602035
https://doi.org/10.1016/j.physrep.2020.07.006
https://doi.org/10.1016/j.physrep.2020.07.006
https://arxiv.org/abs/2006.04822
https://doi.org/10.1103/PhysRevD.102.072004
https://arxiv.org/abs/2006.09721
https://arxiv.org/abs/2006.09721
https://doi.org/10.1016/j.physletb.2021.136577
https://doi.org/10.1016/j.physletb.2021.136577
https://arxiv.org/abs/2104.05656
https://doi.org/10.1103/PhysRevD.93.013014
https://arxiv.org/abs/1508.07471
https://doi.org/10.1088/0004-637X/809/1/98
https://arxiv.org/abs/1507.03991

	Acknowledgements
	Abstract
	Resumo
	List of Tables
	List of Figures
	Contents
	Contents
	CENS & Light Z' Models - Introduction, Formalism and Objectives
	Introduction
	The Standard Model and the Future
	Coherent Scattering
	CENS

	CENS Formalism
	Process Kinematics
	Standard Model Cross Section for CENS
	A Brief Interlude on Effective Field Theory
	Measurable Quantity - Event Rate

	Light Z' Models
	Definition and Assumptions
	Neutrino Non-Standard Interactions
	Simplified Model Approach
	Models of Interest and Revised Cross Section

	Hypothesis Testing and Wilks' Theorem
	Definitions and Formalism - Brief overview
	Testing Algorithm


	Phenomenological Applications - CENS Experiments
	Benchmark Case - CENNS-10 Detector
	Detector properties
	Neutrino Flux
	Event Rate computation

	Experimental Proposal - BDX-DRIFT
	Detector Properties
	Neutrino Flux and Region of Interest
	Event Rate

	Experimental Proposal - ESS-CENS Detectors
	ESS vs SNS
	Proposed Detector Setups
	Neutrino Flux and Region of Interest
	Event Rate

	Sensitivity Analysis
	Sensitivity for the Universal Z' Model
	Sensitivity for the B-L model
	Sensitivity for the L-L model

	Conclusion

	Bibliography

