• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.3.2005.tde-18082023-080814
Document
Author
Full name
Celso Daniel Galvani Junior
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2005
Supervisor
Committee
Saltara, Fábio (President)
López, José Ignacio Hernández
Meneghini, Julio Romano
Title in Portuguese
Análise da perda de carga em válvulas borboleta para instalações hidroelétricas de grande porte utilizando a mecânica dos fluidos computacional.
Keywords in Portuguese
Dinâmica dos fluidos computacional
Métodos numéricos em dinâmica dos fluidos
Usinas elétricas
Válvulas (Projeto)
Abstract in Portuguese
Válvulas borboleta são amplamente utilizadas em usinas hidrelétricas como elemento de proteção para o conjunto turbina-gerador, principalmente devido ao seu baixo custo e elevada resistência mecânica. A principal desvantagem deste tipo de válvula, entretanto, é a perda de carga permanente mesmo quando a válvula está na posição aberta. A utilização de modelos de escala reduzida para levantar o coeficiente de perda de carga, necessário no desenvolvimento de novas geometrias, se mostra uma alternativa demorada e de elevado custo. Assim, este trabalho visa estudar a perda de carga associada a válvulas borboleta do modelo "estrutura vazada" utilizando a Dinâmica dos Fluidos Computacional (CFD), de forma a desenvolver uma metodologia rápida e barata para o cálculo, com boa precisão, do coeficiente de perda de carga. Os valores obtidos a partir das simulações numéricas com o software computacional FluentÒ foram comparados com valores de curvas levantadas a partir de medições experimentais. Confrontando os resultados foi possível analisar os benefícios do uso da simulação numérica assim como seus fatores limitantes para a substituição dos modelos em escala reduzida.
Title in English
Untitled in english
Keywords in English
Computational fluid dynamics
Hydroelectric plants
Numerical methods in fluid dynamics
Valves (Project)
Abstract in English
Butterfly valves have been widely used in hydro power plants as safety elements for the turbine-generator set, mostly because of their low cost and high strength. The main disadvantage of this type of valve, however, is the permanent head loss, even when the valve is in open position. The use of reduced scale models for determining the head loss coefficient, needed during development of new geometries, has been shown as a time consuming and high cost alternative. Thus, the purpose of this work is to study the head loss associated to butterfly valves of the model "stream-guard" using Computational Fluid Dynamics (CFD), in a manner to develop a fast and cheap methodology for the calculation, with good precision, of the head loss coefficient. The values obtained from the numerical simulations with computational software FluentÒ were compared with values from curves that came from experimental measurements. It was possible, by comparing the results, to analyze the benefits of using numerical simulation as well as its limitations for the substitution of reduced scale models
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2023-08-18
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.