• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.3.2022.tde-16032022-105222
Document
Author
Full name
Vinicius Renan de Carvalho
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2022
Supervisor
Committee
Sichman, Jaime Simão (President)
Hübner, Jomi Fred
Oliveira, Gina Maira Barbosa de
Pozo, Aurora Trinidad Ramirez
Ronconi, Debora Pretti
Title in English
Using multi-agent systems and social choice theory to design hyper-heuristics for multi-objective optimization problems.
Keywords in English
Agent-based voting
Borda count method
Copeland method
Hyper-heuristics
Kemeny-young method
Multi-agent systems
Multi-objective optimization
Social choice theory
Abstract in English
The majority of the most effective and efficient algorithms for multi-objective optimization are based on Evolutionary Computation. However, choosing the most appropriate algorithm to solve a certain problem is not trivial and often requires a time-consuming trial process. As an emerging area of research, hyper-heuristics investigates various techniques to detect the best low-level heuristic while the optimization problem is being solved. On the other hand, agents are autonomous component responsible for watching an environment and perform some actions according to their perceptions. In this context, agent-based techniques seem suitable for the design of hyper-heuristics. There are several hyper-heuristics proposed for controlling lowlevel heuristics, but only a few of them are focused on selecting multi-objective optimization algorithms (MOEA). This work presents an agent-based hyper-heuristic for choosing the best multi-objective evolutionary algorithm. Based on Social Choice Theory, the proposed framework performs a cooperative voting procedure, considering a set of quality indicator voters, to define which algorithm should generate more offspring along to the execution. Comparative performance analysis was performed across several benchmark functions and real-world problems. Results showed the proposed approach was very competitive both against the best MOEA for each given problem and against state-of-art hyper-heuristics.
Title in Portuguese
Empregando sistemas multi-agentes e teoria da escolha social para projetar hiper-heurísticas para problemas de otimização multi-objetivo.
Keywords in Portuguese
Algoritmos
Heurística
Sistemas multiagentes
Teoria da escolha social
Votação baseada em agentes
Abstract in Portuguese
A maioria dos algoritmos mais eficazes e eficientes para otimização multi-objetivo são baseados em Computação Evolucionária. Entretanto, o ato de escolher o algoritmo mais apropriado para solucionar um dado problema não é trivial, e sempre requer diversas execuções, o que custa tempo. Hiper-heurísticas de seleção fazem parte de uma área de pesquisa emergente que investiga diversas técnicas para detectar a melhor heurística-de-baixo-nível enquanto o problema de otimização é resolvido. Por outro lado, agentes são componentes autônomos responsáveis por monitorar um ambiente e executar algumas ações de acordo com suas percepções. Neste contexto, técnicas baseadas em agentes mostram-se adequadas para o projeto de hiper-heurísticas. Existem diversas hiper-heurísticas propostas para controlar heurísticas-de-baixo-nível, mas apenas poucas são focadas em selecionar algoritmos evolucionários multi-objetivo. Este trabalho apresenta uma hiper-heurística baseada em agentes focada em escolher o melhor algoritmo evolucionário multi-objetivo. Baseado na Teoria da Escolha Social, o arcabouço proposto executa um procedimento de votação cooperativo, considerando um conjunto de eleitores, que votam baseados em um indicador de qualidade, para definir qual algoritmo deve gerar mais soluções ao longo da execução. Análises comparativas de desempenho foram realizadas empregando diversos problemas de otimização do mundo-real. Resultados mostraram que a abordagem proposta foi muito competitiva tanto quando comparada ao melhor algoritmo para cada problema como também quando comparada a outras hiper-heurísticas do estado-da-arte.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2022-03-16
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.