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"What does it mean... To be strong?"

Ippo Makunouchi

"When you gaze long into the abyss.

The abyss gazes also into you."

Friedrich Nietzsche

"Ansiava por ter conforto, dinheiro, um

nome, pois só assim conseguiria matar

aquela insuportável sensação de

fracasso, de inferioridade."

Erico Verissimo.

"Não sou nada. Nunca serei nada. Não

posso querer ser nada. À parte isso,

tenho em mim todos os sonhos do

mundo."

Álvaro de Campos

"Computers are like old Testament

Gods; lots of rules and no mercy."

Joseph Campbell

"I wanna thank me for, for never

quitting"

Snoop Dogg



"The saddest aspect of life right now is

that science gathers knowledge faster

than society gathers wisdom"

Isaac Asimov

"The universe is not required to be in

perfect harmony with human ambition."

Carl Sagan

"If there is evil in this world, it lurks in

the hearts of man."

Edward D. Morrison

"Homem, por que trabalhas com tanta

fúria durante todas as horas de sol? —

ouviria esta resposta singular: Para

ganhar a vida. E no entanto a vida ali

estava a se oferecer toda, numa

gratuidade milagrosa."

Erico Verissimo
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during good and bad moments, especially the
bad ones.
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RESUMO

A maioria dos algoritmos mais eficazes e eficientes para otimização multi-objetivo são
baseados em Computação Evolucionária. Entretanto, o ato de escolher o algoritmo mais
apropriado para solucionar um dado problema não é trivial, e sempre requer diversas exe-
cuções, o que custa tempo. Hiper-heurísticas de seleção fazem parte de uma área de pesquisa
emergente que investiga diversas técnicas para detectar a melhor heurística-de-baixo-nível en-
quanto o problema de otimização é resolvido. Por outro lado, agentes são componentes
autônomos responsáveis por monitorar um ambiente e executar algumas ações de acordo com
suas percepções. Neste contexto, técnicas baseadas em agentes mostram-se adequadas para
o projeto de hiper-heurísticas. Existem diversas hiper-heurísticas propostas para controlar
heurísticas-de-baixo-nível, mas apenas poucas são focadas em selecionar algoritmos evolu-
cionários multi-objetivo. Este trabalho apresenta uma hiper-heurística baseada em agentes
focada em escolher o melhor algoritmo evolucionário multi-objetivo. Baseado na Teoria da
Escolha Social, o arcabouço proposto executa um procedimento de votação cooperativo, con-
siderando um conjunto de eleitores, que votam baseados em um indicador de qualidade, para
definir qual algoritmo deve gerar mais soluções ao longo da execução. Análises comparativas
de desempenho foram realizadas empregando diversos problemas de otimização do mundo-real.
Resultados mostraram que a abordagem proposta foi muito competitiva tanto quando com-
parada ao melhor algoritmo para cada problema como também quando comparada a outras
hiper-heurísticas do estado-da-arte.

Palavras-chave: Hyper-heuristícas, Sistemas Multi-Agente, Otimização Multi-Objetivo,
Teoria da Escolha Social, Votação Baseada em Agentes, Método de Copeland, Método de
Contagem de Borda, Método de Kemeny-Young.



ABSTRACT

The majority of the most effective and efficient algorithms for multi-objective optimization
are based on Evolutionary Computation. However, choosing the most appropriate algorithm to
solve a certain problem is not trivial and often requires a time-consuming trial process. As an
emerging area of research, hyper-heuristics investigates various techniques to detect the best
low-level heuristic while the optimization problem is being solved. On the other hand, agents
are autonomous component responsible for watching an environment and perform some ac-
tions according to their perceptions. In this context, agent-based techniques seem suitable for
the design of hyper-heuristics. There are several hyper-heuristics proposed for controlling low-
level heuristics, but only a few of them are focused on selecting multi-objective optimization
algorithms (MOEA). This work presents an agent-based hyper-heuristic for choosing the best
multi-objective evolutionary algorithm. Based on Social Choice Theory, the proposed frame-
work performs a cooperative voting procedure, considering a set of quality indicator voters,
to define which algorithm should generate more offspring along to the execution. Compar-
ative performance analysis was performed across several benchmark functions and real-world
problems. Results showed the proposed approach was very competitive both against the best
MOEA for each given problem and against state-of-art hyper-heuristics.

Keywords: Hyper-heuristics, Multi-Agent Systems, Multi-objective Optimization, Social
Choice Theory, Agent-Based Voting, Copeland Method, Borda Count Method, Kemeny-Young
Method.
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1 INTRODUCTION

Meta-heuristics are algorithms, solution methods that orchestrate an interaction between
local improvement procedures (heuristics) and higher-level strategies to create a process ca-
pable of escaping from local optima and performing a robust search of a solution space (GEN-
DREAU; POTVIN, 2010). Thus, usually, heuristics specialize in solving problems for one par-
ticular domain, while meta-heuristics are more generic and adaptive in several domains. Due to
meta-heuristics generality, this kind of algorithm is widely used to solve complex optimization
problems in industry and services in areas ranging from finance to production management
and engineering (BOUSSAID; LEPAGNOT; SIARRY, 2013).

One of the most used meta-heuristics class is Evolutionary Algorithms (EAs) (COELLO,
2007). EAs are meta-heuristics which employ Darwin’s theory of the survival of the fittest as
their inspiration. This kind of algorithm generates solutions using the crossover and mutation
heuristic operators. It employs an objective function to choose which individuals (solutions for
the problem) will compose the next population.

In order to employ an evolutionary algorithm to find solutions for a given problem, an
objective function is needed in order to evaluate the quality of generated solutions. An objective
function has some input parameters and output, which tell us how good a given solution is.
Each output is called an objective value. Thus, these problems can be classified according
to the number of objectives in their objective function as mono-objective problems (for one
objective) and multi-objective problems (MOPs) for more than one.

Multi-Objective Evolutionary Algorithms (MOEAs) have been successfully applied to solve
MOPs (BOUSSAID; LEPAGNOT; SIARRY, 2013). Since MOEAs are evolutionary algorithms,
they allow a flexible representation of the problem solutions and the use of problem-specific
heuristics. Due to the general and abstract characteristics of MOEAs, researchers have pro-
posed several algorithms to cope with MOPs (LI et al., 2015a).

In MOPs, no single algorithm can outperform the others in all problems, and algorithms
perform differently depending on the problem characteristics. In this context, over the years,
some techniques have been proposed in order to tackle the Algorithm Selection Problem,
among them one called Hyper-heuristics.
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Hyper-heuristics are high-level heuristics that can be used to reduce the difficulty of se-
lecting the most suitable Low-Level Heuristic (LLH) for a given problem. A LLH can be either
a heuristic operator such as crossover and mutation, or a meta-heuristic, such as evolutionary
algorithms. Moreover, hyper-heuristics may or may not employ learning techniques. When
applied, learning may occur online, when it is performed along with the search, or offline, by
employing a training set beforehand.

Most research in the field of Hyper-heuristic has been limited to treating low-level heuristic
selection, and the majority of research has been limited to treat mono-objective optimization
problems (MAASHI; ÖZCAN; KENDALL, 2014). Moreover, there are even fewer works that
focus on multi-objective algorithm selection.

The present work proposes a generic framework designed as a selection hyper-heuristics
for choosing the most suitable multi-objective evolutionary algorithm (MOEA), responsible for
solving multi-objective optimization problems. This online approach selects MOEAs, and for
this reason, it is considered as an online learning hyper-heuristic.

The framework concept consists of applying Social Choice Theory techniques (LITTLE,
1952), in special voting methods, to design a multi-objective agent-based hyper-heuristic.
Voting methods are employed due to their ability to resolve disagreements among different
quality indicators, which are responsible for evaluating MOEAs performance.

In the proposed approach, MOEAs are defined as candidates to be voted in one election,
and multi-objective quality indicators are defined as voters. Thus, voters are responsible for
evaluating and sorting their algorithm preferences according to their quality evaluation. Finally,
using the election outcome, the proposed hyper-heuristic defines how each algorithm will act.
This approach can be adapted to work with different meta-heuristics, quality measures and
voting methods. Figure 1 presents how the present work is categorized. Blue lines mean
relation, black lines mean no relation.

Employing an election composed of candidates and voters makes the approach better
designed as a distributed system, allowing the voters to vote simultaneously. In this thesis,
MOEAs are competing against each other for gaining computational time, but they are also
cooperating by aiming to solve a common optimization problem. For these reasons, multi-
agent systems was considered the most suitable strategy for the design. Thus, candidates
(algorithms) and voters (quality measures) can be better designed as agents.
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Figure 1: Present work related areas

1.1 Motivation

Choosing a heuristic or meta-heuristic for a given problem is not a trivial task, because
there are many different options. Thus, to define which algorithm to use, it is necessary
to perform a tuning method that consists of executing all meta-heuristics and evaluate their
results to find the most suitable algorithm. A tuning method usually takes a long time and
cannot be easily performed.

Since meta-heuristics are employed by researchers from different areas, approaches focused
on reducing the effort on choosing a meta-heuristics are interesting. However, just a few works
focus on multi-objective algorithm selection.

This present work can be classified as an on-line hyper-heuristic. This kind of algorithm
needs no training, and it can find the best algorithm while solving an optimization problem.
Sometimes, this kind of hyper-heuristic can also outperform meta-heuristic in overall results,
which means, find better solutions than all single meta-heuristics across a set of different prob-
lems. This makes online hyper-heuristics even more interesting because it allows researchers
to solve their problems with less effort.



Introduction 4

1.2 Objective

The main goal of this research is to define a multi-agent election-based hyper-heuristic
framework, which reduces the user effort on choosing multi-objective evolutionary algorithms.
Thus, the user can just specify his problem and leave the task of choosing the best MOEA
for the proposed hyper-heuristic. In order to illustrate the effectiveness of the proposed hyper-
heuristic, some experiments were performed to answer the following questions:

RQ1 How does the proposed hyper-heuristic’s performance change when applied to different
MOPs? This question is necessary to evaluate the results obtained by the proposed HH
when compared with meta-heuristics and other HHs when considering several MOPs.

RQ2 How does the hyper-heuristic performance change when using different voting methods?
This question is necessary to analyze the proposed HH instances, that means, when the
proposed HH is instantiated using different voting methods.

In order to pursue the main goal, the following sub-goals were needed:

1. Define an election-based multi-agent online hyper-heuristic concentrated on multi-
objective problems. This hyper-heuristic must contain a set of algorithms, quality indi-
cators, and a predefined voting method;

2. Explore the behavior of agents (candidates and voters) in different voting methods
considering several benchmark problems;

3. Evaluate the proposed hyper-heuristic according to different quality indicators in order
to find if the proposed approach finds competitive results against tuned algorithms.

4. Evaluate the proposed hyper-heuristic performance on real-world problems. Benchmarks
usually provide information about their problems, such as worse and best solutions that
can be found. In real-world problems, this information is unknown. Thus, for better
comparisons, real-world problems are employed.
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On the other hand, this work did not have as goals:

1. This work did not aim to create a new hybrid meta-heuristics;

2. The approach was not applied to mono-objective meta-heuristics;

3. This is a hyper-heuristic and not a meta-learning approach. Thus, no machine learning
algorithms were considered a candidate in elections, for example, linear and logistic
regression, Support vector machines, clustering, and deep learning techniques.

4. The proposed approach is not an automatic parameter tuning method, which is respon-
sible for online selecting parameters for a given algorithm, but an online hyper-heuristic.
Thus, it can be compared just with other online hyper-heuristics;

5. No new voting method was proposed, just existing ones were considered.

1.3 Methodology

First, a literature review on multi-objective hyper-heuristics was carried out to identify the
current literature scenario and existing gaps. This review also included multi-agent approaches,
but focused on the best approaches, even if they were not agent-based.

After a review, a model elaboration was started. This model had been designed considering
knowledge from Multi-Agent Systems, Social Choice Theory, and Evolutionary Computation
areas. As a result, an election-based hyper-heuristic framework was defined and implemented.

Experiments were performed in order to evaluate the proposed approach. In a first ex-
periment (Section 7.2), originally published in (CARVALHO; SICHMAN, 2017), the proposed
hyper-heuristic was instantiated using three different voting methods described in Chapter 4 in
order to solve the benchmark WFG (Section 2.5.1) for two and three objectives. The second ex-
periment (Section 7.3), originally published in (CARVALHO; SICHMAN, 2018b; CARVALHO
et al., 2020), also instantiates the proposed HH using the three voting methods, but in this
case, to find solutions for some real-world problems (Section 2.5.2). In both Experiment I and
Experiment II, the HH performance was compared against the meta-heuristics outcome, which
means full instances of the meta-heuristics, which are also employed as LLH. Finally, a third
experiment was performed (Section 7.4) considering 18 real-world problems, the three HH
instances (for each voting method), and the results were compared to three other state-of-art
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hyper-heuristic. These results were originally published in (CARVALHO; ÖZCAN; SICHMAN,
2021).

1.4 Contributions

To our current knowledge, this was the first work in the literature that combined multi-
objective optimization, online hyper-heuristics, multi-agent systems and voting methods.
Moreover, this work differs from state-of-art MOP hyper-heuristics in how low-level-heuristics
run: instead of running all in sequence, by adopting a MAS approach all LLH may be executed
in parallel. So, solutions can be optimized at the same time by the different LLHs. This is an
interesting aspect due to the fact the LLH performance is evaluated in the same momentum,
instead of considering LLH performance in different search times.

In order to evaluate the proposed framework, some instances were created combining
different algorithms and voting procedures. In the beginning, just benchmarks were employed
and the proposed approach was just compared against the best MOEA available in the LLH
set. Along with this research, we employed real-world optimization problems and started
to compare the results against state-of-art hyper-heuristics. In the end, several real-world
problems were employed in order to evaluate how this hyper-heuristic can diminish the effort
of decision-makers and increase search performance.

The results have shown the proposed approach overcomes current state-of-art approaches.
The combination of multi-agent concepts and preferences summarization (Social Choice The-
ory) can, in fact, improve the selection of Low-Level Heuristics in online hyper-heuristics.

1.5 Text Organization

The text is divided into three parts and composed of eight chapters and one appendix.
Part I is composed of Chapters 2, 3 and 4; while Part II is composed of Chapters 5 and 6.
Finally, Part III is composed of Chapter 7 and 8. All the chapters are described next:

• Chapter 2 - Multi-objective optimization and evolutionary computation covers
basic concepts of heuristics, meta-heuristics, multi-objective problems, multi-objective
algorithms and quality indicators;



Introduction 7

• Chapter 3 - Algorithm Selection Problem introduces the Algorithm Selection Prob-
lem and Hyper-heuristics;

• Chapter 4 - Multi-Agent Systems and Social Choice Theory introduces concepts
related to agents, and covers basic ideas of social choice and voting methods, needed
to fully understand this thesis;

• Chapter 5 - Multi-agent Election-Based Hyper-Heuristic - presents and details
this Thesis proposal;

• Chapter 6 - Related Work - presents the related work;

• Chapter 7 - Results - shows the preliminary results obtained until now;

• Chapter 8 Conclusion - presents conclusion and Further Work;

• Appendix A: List of Publications - details the publications related to this thesis.
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PART I

BACKGROUND
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2 MULTI-OBJECTIVE OPTIMIZATION AND EVOLUTIONARY
COMPUTATION

This present chapter introduces concepts related to Evolutionary Computation and Multi-
objective Optimization. First, Section 2.1 succinctly introduces optimization concepts. Sec-
tion 2.2 presents heuristic, meta-heuristic and evolutionary algorithms. Then, in Section 2.3,
Multi-objective evolutionary algorithms are discussed and some of the main algorithms are dis-
cussed. In Section 2.4, some quality indicators, that are necessary for performance evaluation
in the context of multi-objective optimization, are presented. Finally, in Section 2.5, some
multi-objective problems, that can be applied to test our approach, are described.

2.1 Optimization problems

An optimization problem consists of finding extremum values (minimal or maximum) for a
mathematical function, commonly named as fitness or objective function. For this purpose, a
set of decision variables X = {x1, ..., xdv} (with size dv) have to be considered. In this context,
a solution is a value assignment for each variable of this set of decision variables. Thus,
to evaluate how well a solution solves the optimization problem, we just need to calculate
the objective function f(X) = f(x1, x2, x3, ..., xn). This objective function can either be
minimization (min f(X)) or maximization (max f(X)). Both decision variables and objective
functions can be continuous (X ∈ R) or discrete (X ∈ Z). Thus, optimization problems can
also be classified as discrete or continuous.

Many real-world problems need the specification of multiple objective functions in order
to evaluate solutions using different criteria at the same time. For example, suppose the case
of buying a car considering, at the same time, price and fuel consumption. In this case, the
objective function has a set of outputs with size no. In these problems, solutions should opti-
mize different and often conflicting criteria (COELLO, 2007). So, in these problems, we aim
to find the set of optimal trade-off solutions known as the Pareto optimal set (BRADSTREET
et al., 2007). These problems are known as multi-objective problems (MOPs).

In Pareto dominance, a certain solution sa in the decision space of a MOP is superior to
another solution sb if and only if f(sa) is at least as good as f(sb) in terms of all the objectives
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and strictly better than f(sb) in terms of at least one single objective. Solution sa is also said
to strictly dominate solution sb (ADRA, 2007).

The Pareto front is a subset of the search space which contains all Pareto optimal solutions.
Hence, there are a set of solutions, which do not dominate one another. Figure 2 presents a
two-objective minimization problem. Here we can see The Pareto front (in blue) and a set of
dominated solutions (in red). Two non-dominated solutions (s1 and s2) are highlighted, both
belong to the Pareto Front. Solution s1 prioritizes objective 2 while s2 objective 1. There are
23 other solutions that are also not-dominated (in blue). Thus, the final unique solution has
to be selected by a decision-maker responsible for evaluating the trade-off among the 25 found
solutions.

Figure 2: Two objectives Pareto Front Minimization Example

Represented in green in Figure 2 , the nadir point represents the worse possible solution
for the problem. The nadir point is important since it is used as the reference point by some
quality indicators, enabling to compare different algorithms performance on solving MOPs.

Furthermore, Fronts are used as a reference by some quality indicators. Benchmark prob-
lems have reference sets composed of mathematically found solutions. These solutions are the
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best possible, and there is no way to excel them. In this case, we name this front as the True
Pareto Front (PFt). On the other hand, real-world problems do not have PFt. However, one
can generate a front to be used as a reference. In this case, we generate a front composed
of all non-dominated solutions, found across all the experiments, by all the studied algorithms
for a given problem. Thus, there is no way for a studied algorithm to surpass solutions from
this generated set. This set is named as Known Pareto Front (PFk).

Evolutionary Algorithms are the most used algorithm to solve optimization prob-
lems (COELLO, 2007), and are presented next.

2.2 Evolutionary Algorithms

Heuristics are criteria, methods, or principles for deciding which among several alternatives
courses of action promises to be the most effective in order to achieve some goal (PEARL,
1984). Heuristics do not guarantee optimal solutions; in fact, they do not guarantee any
solutions at all; all that can be said for a useful heuristic is that it offers solutions that are
good enough most of the time (FEIGENBAUM; FELDMAN et al., 1963).

Meta-heuristic, in turn, can be defined as an iterative generation process that guides a
subordinate heuristic by combining intelligently different concepts for exploring and exploiting
the search space in order to find efficiently near-optimal solutions (OSMAN; LAPORTE, 1996).

Usually, heuristics are specialized in solving problems for one particular domain, while
meta-heuristics are more generic and adaptive in several domains.

Meta-heuristics can be classified into two groups: Single-Solution Based or Population-
Based ones. In the single-solution approach, a single initial solution is generated and up-
dated along with the search. Thus, just the best-found solution is stored. Simulated Anneal-
ing (AARTS; KORST, 1989) and GRASP (FEO; RESENDE, 1995) are examples of single-
solution meta-heuristics.

Population-based meta-heuristics generate a population of solutions at the beginning of
the search, and each iteration, update the population with newly generated solutions. The
most studied population-based methods are related to Evolutionary Computation (EC) and
Swarm Intelligence (SI) (BOUSSAID; LEPAGNOT; SIARRY, 2013).
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Evolutionary Computation is the general term for several optimization algorithms that
are inspired by the Darwinian principles of nature’s capability to evolve living beings well
adapted to their environment (BOUSSAID; LEPAGNOT; SIARRY, 2013). These algorithms
are also called as Evolutionary Algorithms (EA), and they all share a common underlying idea
of simulating the evolution of individual (or solution) structures via processes of selection,
reproduction, and mutation, thereby producing better solutions (BOUSSAID; LEPAGNOT;
SIARRY, 2013).

In order to discover which are the best solutions generated by evolutionary algorithms, we
need a definition of an objective function. Thus, along with the execution, the fittest set is
selected according to its objective value.

Algorithm 1 presents a generic Evolutionary Algorithm. In the beginning, the population is
filled with random solutions (Line 3). Solutions are then evaluated according to the predefined
objective function (Line 4). While a termination criterion is not reached (usually a max number
of iterations), parents are selected (Line 6) and used by a heuristic to generate new solutions
(Line 7). New solutions are evaluated according to the objective function (Line 8). Finally,
offspring and parent solutions compete to survive and compose the next generation population
(Line 9).

Algorithm 1: Generic Evolutionary Algorithm
1 Input: Optimization Problem, Termination Condition
2 begin
3 Initialize the population with random solutions;
4 Evaluate solutions according to the objective function;
5 while a termination condition is not satisfied do
6 Select parents;
7 Generate new solutions using some heuristic;
8 Evaluate new solutions according to the objective function;
9 Select solutions to compose the next generation;

10 end
11 end

In the literature, some algorithms implemented the concept of an evolutionary algorithm.
That is the case of Genetic Algorithm (GOLDBERG; HOLLAND, 1988) and the Evolutionary
Programming (KOZA, 1992), which mainly differs in how solutions are represented: genetic
algorithms usually consider fixed-size arrays for the decision variables set, while evolutionary
programming considers data structures like trees. These algorithms focused on mono-objective
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optimization, which means, one single value to represent the quality of a given solution. How-
ever, several real-world problems consider more than one objective value in order to evaluate
individual quality properly. In this scenario, Multi-objective Evolutionary Algorithms (MOEAs)
are able to find good solutions for this kind of problem (COELLO, 2007). At next, we present
the distinguishing features of MOEAs.

2.3 Multi-objective Evolutionary Algorithms

MOPs are tackled today using Evolutionary Algorithms by engineers, computer scientists,
biologists, and operations researchers alike (COELLO, 2007). Multi-objective Evolutionary
Algorithms (MOEAs) are extensions of EAs for multi-objective problems that usually apply
the concepts of Pareto dominance (ADRA, 2007) to create different strategies to evolve and
diversify of the solutions.

The evolutionary computation community has been particularly active in this area and a
vast number of evolutionary multi-objective algorithms have been proposed. Many of these
algorithms are genetic algorithms that differ from each other, mainly in the way that solutions
are ranked at every iteration (VÁZQUEZ-RODRÍGUEZ; PETROVIC, 2012).

At next, we present some of the most important MOEAs in the literature. Figure 3
presents a set of solutions (numbered from 1 to 14). In this example, offspring O and parent
population P are already joined. Thus, this figure will be used to detail how the following
MOEAs select surviving solutions.

2.3.1 NSGA-II

The main characteristic of the Non-Dominated Sorting Genetic Algorithm (NSGA-II)
(DEB et al., 2002) is the application of a robust elitism mechanism, where at each gen-
eration, a non-dominated sorting is conducted and a domination rank is attributed to each
solution. The NSGA-II builds a population of competing solutions, ranks and sorts each solu-
tion according to non-domination level, applies evolutionary operations to create a new pool of
offspring, and then combines the parents and offspring before partitioning the new combined
pool into fronts (COELLO, 2007).

Through the non-dominated-sort, the population is sorted by creating several fronts, where
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Figure 3: Solutions used as example

solutions in the first front are non-dominated regarding all solutions, and solutions from the
second front are dominated only by the solutions of the first front, and so on. Then, the
fronts are sequentially added to the next population. If by including a front, the size of the
population is surpassed, then the solutions in this front are ranked according to their crowding
distances.

The crowding distance is a diversity estimator extensively applied to evolutionary multi-
objective algorithms to promote diversity. It estimates the density of solutions surrounding a
particular point and only the best solutions from this last front are used to fill the population.

The new population is used to generate a new main population starting a new cycle of
the algorithm. In the end, after the stop criterion, the algorithm returns the population as a
result.

Algorithm 2 and Figure 4 present NSGA-II algorithm, which has as inputs the population
size N , the objective function to be optimized f(s), and the max number of generations
g. At Lines 6 and 12, rank values are assigned, these ranking tells how much dominated a
solution is. At Line 13, subsets are created taking into consideration rank values, and for each
subset, the Crowding Distance is calculated (Line 14). This is necessary for sorting all subsets
according to higher Crowding distance values (Line 15). So, at Line 16, a new population Pt+1

is created by copying all complete subset until no more full subset can be added. At Line 18,
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in case |Pt+1| < N , last subset solutions (the one which could not be added), are selected
according to Crowding Distance values and added to population Pt+1 until |Pt+1| = N .

Algorithm 2: NSGA-II algorithm, adapted from (COELLO, 2007)
1 Input: N , f(s), g
2 begin
3 Initialize Population P ;
4 Generate Random Population - size N ;
5 Evaluate Objective values;
6 Assign rank (level) based on Pareto dominance - Sort;
7 Generate offspring population O;
8 Parent Selection;
9 Recombination and mutation;

10 for i← 1 to g do
11 for each s ∈ P ∪O do
12 Assign rank (level) based on Pareto dominance - Sort;
13 Generate sets of nondominated vectors along with the search space;
14 Assign Crowding Distance values;
15 Sort subset solutions according to Crowding Distance values;
16 Loop (inside) by adding solutions to next generation starting from the first

front until N individuals;
17 end
18 Select points (elitist) on the lower front (with lower rank) and are outside a

crowding distance;
19 Create next generation O;
20 Parent Selection;
21 Recombination and mutation;
22 end
23 end

Figure 5 presents how NSGAII selects surviving solutions through its elitism method. We
have 14 solutions (from Figure 3) competing for survival considering a max population size
N = 7. So, first NSGA-II split solutions into subsets according to the Dominance Level

(Figure 5a). Then, Crowding-Distance values are assigned (Figure 5b). These values are 0 for
solutions inside a front for solutions containing the best values for an objective. For example,
for the subset 0, solutions 1 and 4 receive 0, for the subset 1, solutions 5 and 10 also receive
0. Since NSGA-II considers non-dominance as the first criterion, solutions 1 to 4 are selected.
Then we need to select three more solutions to complete the population, assuming we have
N = 7. Reference solutions (5 and 10) are then selected. At this point, we need to select
just one more solution. Hence, the one with higher Crowding distance is selected: solution
8. Thus, the surviving solutions for N = 7 are {1, 2, 3, 4, 5, 8, 10}, represented in blue in
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Figure 4: NSGAII Example

Figure 5b. Another example would be if we had N = 3. In this case, solutions 1 and 4 would
be selected. Then, solutions 2 and 3 would be compared, and solution 2 would be selected
due to its higher Crowding Distance value, leading to {1, 4, 2} as surviving solutions.

(a) Dominance Ranking (b) Crowding Distance

Figure 5: NSGA-II surviving selection
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2.3.2 SPEA2

Strength Pareto Evolutionary Algorithm 2 (ZITZLER; LAUMANNS; THIELE, 2001) has
two main differences in relation to NSGA-II: the way of ranking the solutions and the use of
elitism through an external population named archive. SPEA2 is an algorithm that introduces
the Strength value for selecting new solutions for the new population. This algorithm incorpo-
rates a fine-grained fitness assignment strategy, which considers for each solution the number
of solutions that it dominates and that it is dominated by.

As in the NSGA-II, a joined population is created, but here the solutions are selected both
from the population and from the archive. This joined population can be used either in the
crossover and mutation operators to generate the offspring. The non-dominated solutions are
used to fill the archive, and as the maximum size of the archive is determined by a parameter
(N), two situations can occur. In the first case, the number of non-dominated solutions is
smaller than the archive size; in this case, the archive is filled with dominated solutions. In
the second situation, if the number of non-dominated solutions is greater than the maximum
archive size, then an operation to eliminate solutions is applied. Only individuals belonging to
the archive survive for the next generation.

The fitness strategy is calculated according to Equation 2.1. First all solution strength

values are calculated. A strength value for a given solution s is the number of solutions which
dominate s. With all solutions strength value, we can calculate the RawFitness value, which
is the strength values sum of all solutions which dominate s.

Fitnesss = RawFitnesss + 1
(distance(s, k) + 2) , (2.1)

Equation 2.1 also use a Euclidean Distance between solution s to the k-th population
solution, given by k =

√
N +N .

Algorithm 3 and Figure6 present SPEA2 algorithm, which has as input the population size
N , the archive size N , the max number of generations g, and the objective function f(s).

After initialization, SPEA2 begins calculating all solutions fitness, according to Equa-
tion 2.1, at Line 6. In the following, solution with lower fitness are copied to the archive
(Line 7). So, in the case of |E| > N , then an elimination operator is performed by calculating
neighbors distances and removing the nearest neighbor. In case of |E| < N , the archive
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Algorithm 3: SPEA2 algorithm, adapted from (COELLO, 2007)
1 Input: N , N , g, f(s)
2 begin
3 Initialize Population P ;
4 Create empty archive E;
5 for i← 1 to g do
6 Compute fitness of each individual in P and E;
7 E ← Non-dominatet set from P ∪ E;
8 if Size of E is bigger than N then
9 Use the truncation operator to remove elements from E when the capacity

of the archive has been extended;
10 end
11 else if Size of E is lower than N then
12 Use dominated individuals P to fill E;
13 end
14 Perform parent selection;
15 Apply crossover and mutation to generate P ;
16 end
17 end

receives dominated solutions from P . SPEA2 continues selecting parents, and performing
crossover and mutation to generate a new offspring in P .

Figure 6: SPEA2 Flowchart
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Figure 7 presents SPEA2 Fitness calculation and surviving selection, and also considers
solutions from Figure 3. Since SPEA2 also uses Dominance level then Figure 5a is also
applicable here as the first step. Then SPEA2 uses this information to calculate its Fitness.
Thus, considering N = N = 7, SPEA2 would select solutions {1, 2, 3, 4, 5, 9, 10}, represented
in blue in Figure 7, since they have smaller fitness values. Solutions {11, 12, 13, 14} weren’t
even considered, and for that reason, they don’t have fitness calculated. Considering N =

N = 3, SPEA2 would also select solutions {1, 2, 4}.

Figure 7: SPEA2 surviving selection

2.3.3 IBEA

The main idea of the Indicator-Based Evolutionary Algorithm (ZITZLER; KÜNZLI, 2004)
is to use a quality indicator (Section 2.4) to select surviving solutions. This quality indicator is
used to calculate the contribution of a solution; this means how much the quality increases if
a given solution is kept in the population. Thus, the algorithm can compare different contri-
butions to add to the new population the solutions which contribute more. One of the most
known indicators used with IBEA is Hypervolume (ZITZLER; THIELE, 1999) due to its capac-
ity to evaluate the convergence and diversity of the search process at the same time (ZITZLER;
THIELE, 1999). More details about this indicator can be found in Section 2.4.2.

Algorithm 4 and Figure 8 show IBEA flow. It starts by creating a random population
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(Line 3), an empty archive, and evaluating the objective values of population solutions (Line
4). Then, it repeats the following process until the stop criterion is satisfied: the parents
are selected (Line 6) to be used in the crossover and mutation operations to generate the
offspring (Line 7). After the reproduction step, the offspring are added to the population
(Line 8). Then the quality indicator contribution is calculated (Line 9). So, while the size of
the population exceeds, the worst individual (evaluated by the selected indicator) is removed
from the population, and the population fitness is recalculated (Line 10). Finally, the archive
receives the set containing the surviving solutions and the population is set as empty (Line
11). When the population reaches the size, a new cycle of the algorithm starts. In the end,
IBEA returns a set of non-dominated solutions found.

Algorithm 4: IBEA algorithm
1 Input: N , g, f(s)
2 begin
3 Initialize Population P and the archive E;
4 Evaluate Objective values;
5 for i← 1 to g do
6 Parent Selection using E;
7 Recombination and mutation using P ;
8 JoinedSet← P ∪ E;
9 Calculate indicator contribution for each solution in JoinedSet;

10 Remove solutions with lower contribution until |JoinedSet| = N ;
11 E ← JoinedSet and P ← ∅;
12 end
13 end

Once more, Figure 9 presents how IBEA selects surviving solutions (in blue) of the same
example used in this section. In this example, the Hypervolume contribution is calculated for
all of the solutions considering as the reference the point (0, 0) as reference. So solutions with
smaller values contribute more. Thus, solutions {1, 2, 3, 4, 5, 8, 9} are selected for N = N = 7.
With N = N = 3 solutions {1, 3, 4} would be selected.

2.3.4 mIBEA

The Modified Indicator-Based Evolutionary Algorithm (Li et al., 2017), based on IBEA,
also employs Hypervolume as the quality indicator. Different from its predecessor, which
considers all solutions in E∪P to select solutions to compose P ′ based on the quality indicator
contribution, this algorithm uses only non-dominated solutions from the union set, and then
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Figure 8: IBEA Flowchart

Figure 9: IBEA surviving selection
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selects the ones which contribute more. This algorithm works in the same way as IBEA
after this. This modification improves the algorithm convergence and removes solutions with
high-quality indicator contributions, which are far away from the Pareto Front.

Algorithm 5 and Figure 10 show mIBEA flow. It starts by creating a random population
(Line 3), an empty archive, and evaluating the objective values of population solutions (Line
4). Then, it repeats the following process until the stop criterion is satisfied: the parents are
selected (Line 6) to be used in the crossover and mutation operations to generate the offspring
(Line 7). After the reproduction step, the offspring are added to the population (Line 8). So the
main difference between IBEA and mIBEA occurs, the algorithm removes all non-dominated
solutions from the population (Line 9). Then the quality indicator contribution is calculated
(Line 10). So, while the size of the population exceeds, the worst individual (evaluated by the
selected indicator) is removed from the population, and the population fitness is recalculated
(Line 11). Finally, the archive receives the set containing the surviving solutions and the
population is set as empty (Line 12). When the population reaches the size, a new cycle of
the algorithm starts. In the end, IBEA returns a set of non-dominated solutions found.

Algorithm 5: mIBEA algorithm
1 Input: N , g, f(s)
2 begin
3 Initialize Population P and the archive E;
4 Evaluate Objective values;
5 for i← 1 to g do
6 Parent Selection using E;
7 Recombination and mutation using P ;
8 JoinedSet← P ∪ E;
9 NonDominated← Remove dominated solutions from JoinedSet;

10 Calculate indicator contribution for each solution in NonDominated;
11 Remove solutions with lower contribution until |NonDominated| = N ;
12 E ← NonDominated and P ← ∅;
13 end
14 end

Using the same example of the section again, mIBEA would select just solutions {1, 2, 3, 4}
for N = N = 7 and ignore other solutions, since it first removes dominated solutions. For
N = N = 3, four non-dominated solutions would compete, and solutions which smaller Fitness
values would be selected: in this case, mIBEA would select {1, 3, 4}, the same that would be
selected by IBEA. This algorithm, which considers Pareto Dominance as a criterion, uses more
the quality indicator contribution (in this case, the Hypervolume contribution) when most of
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Figure 10: mIBEA Flowchart

the solutions are non-dominated.

2.3.5 GDE3

Generalized Differential Evolution 3 (KUKKONEN; LAMPINEN, 2005), differently from
previously presented algorithms, doesn’t employ a crossover operator to generate new solutions.
This algorithm instead uses the differential evolution operator (STORN; PRICE, 1997).

Differential Evolution (DE) is a relatively new EA and it has been gaining popularity during
previous years (KUKKONEN; LAMPINEN, 2005)

Different from the crossover operator, DE generates new solutions by combining more
than three different solutions. In most cases, a DE is just applied on continuous optimiza-
tion problems, because DE generates offspring parameters by calculating weighted differences
among solutions parameters.

Table 1 presents the most used differential evolution equations in literature. These equa-
tions are performed using every solution parameter. In these equations, s1, s2, s3, s4 and s5
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are independent solutions, randomly selected, different of the current solution sc. sb is the
best solution in the current population for DE heuristic. F , F1 and F2 are the DE scaling
factors. In this table, sdv represents the decision variable set of a given solution s.

Table 1: Differential Evolution types

Name Equation
DE/rand/1 scdv ← s1dv + F ∗ (s2dv − s3dv)
DE/rand/2 scdv ← s1dv + F1 ∗ (s2dv − s3dv) + F2 ∗ (s4dv − s5dv)
DE/best/1 scdv ← sbdv + F ∗ (s2dv − s3dv)
DE/best/2 scdv ← sbdv + F1 ∗ (s1dv − s2dv) + F2 ∗ (s3dv − s4dv)
DE/current-to-best/1 scdv ← scdv + F1 ∗ (sbdv − scdv) + F2 ∗ (s2dv − s3dv)

Algorithm 6 presents the GDE3 algorithm. First, the initial population is generated and
evaluated (Lines 3 and 4). Then, until the max generations are reached, for every solution
s ∈ population (Line 7), the algorithm selects parent solutions (Line 8), find the best solution
in the population (Line 9) (if necessary), then generates and adds the new solution s′c to the
offspring population (Line 10). After generating N new solutions, the algorithm evaluates
the offspring population (line 13) and compare all parent with respective offspring solutions
according to Pareto dominance to generate an auxiliary population (Line 14). The auxiliary
population is submitted to a Crowding distance selection (Line 15), whether his size is bigger
than N . Finally, the auxiliary population becomes the current population (Line 16).

Considering the selection of surviving solutions, GDE3 is similar to NSGA-II, since both
algorithms implements Pareto-Dominance and Crowding-Distance. The difference between
these algorithms lies in how they generate solutions: while NSGAII uses crossover, GDE3
employs differential evolution instead. Using the same example of this section, GDE3 would
select the same solutions chosen by NSGA-II, and therefore the same results obtained in
Figure 5 would be obtained by GDE3.

2.3.6 Discussion

Two kinds of evolutionary algorithms were presented in this section: Genetic algorithms
such as NSGA-II, SPEA2, IBEA and mIBEA; and one algorithm based on differential evolution
(GDE3).

Among these algorithms, NSGA-II is undoubtedly the most known in the literature and
the fastest (in computational time) of the four genetic algorithms. mIBEA is the second
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Algorithm 6: GDE3 algorithm
1 Input: N , g, f(s)
2 begin
3 Initialize Population P ;
4 Evaluate Objective values;
5 for i← 1 to g do
6 O ← ∅;
7 for Each sc ∈ population do
8 Select from P some distinct parents (s1, s2, s3, s4, s5) different of sc;
9 Find the best solution in population;
10 Generate a new solution s′c with the Differential Evolution operator;
11 O ← O + {s′c};
12 end
13 Evaluate O objective values;
14 Compare parent (P ) and offspring (O) solutions according to Pareto

Dominance to generate an auxiliary population aux;
15 Perform the Crowding Distance selection into aux;
16 P ← aux;
17 end
18 end

Figure 11: GDE3 Flowchart
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fattest. IBEA and SPEA2 are the two slowest. In case we consider more than five objectives
functions IBEA becomes the slowest, followed by mIBEA due to the high computational cost
of calculating multi-dimensional hypervolumes. GDE3 is only here which can just be applied
for continuous optimization, due to the fact of using differential evolution.

The No Free Lunch Theorem indicates that search algorithms such as MOEAs are not
individually robust over all problems by definition (COELLO, 2007). For example, in (BRAD-
STREET et al., 2007), the authors compared NSGA-II and SPEA2 using the WFG bench-
mark (HUBAND et al., 2006) and found NSGA-II better than SPEA2 on two-objective in-
stances. However, increasing the number of objectives makes SPEA2 outperform NSGA-II.
In (YEN; HE, 2014) the authors compared NSGA-II, SPEA2, IBEA, using ZDT (ZITZLER;
DEB; THIELE, 2000) and DTLZ (DEB, K. et al, 2005) benchmarks, and no algorithm outper-
formed all others in all problems. The same happened in (Li et al., 2017) considering mIBEA
and these other algorithms.

2.4 Quality Indicators

Due to the fact that MOPs having a set of solutions (Pareto Front) instead of a single
solution, direct comparisons between algorithms results cannot be directly performed. In order
to allow algorithm comparison, some quality indicators were proposed to assess a MOEA
performance in solving multi-objective optimization problems. In this session, some of them
are presented. Most of them employ a returning set of solutions (S) in order to evaluate a
MOEA quality.

2.4.1 RNI

The ratio of non-dominated solutions (TAN; LEE; KHOR, 2002) evaluates the percent of
non-dominated solutions (ND(S)) in the population (S), as shown in Equation 2.2. Higher
RNI values are better than lower ones.

RNI(S) = |ND(S)|
|S|

(2.2)
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2.4.2 Hypervolume

The hypervolume (ZITZLER; THIELE, 1999) of a non-dominated solution set S is the
size of the part of objective space that is dominated collectively by the solutions in S (WHILE;
BRADSTREET; BARONE, 2012). Thus, the hypervolume indicator computes the area (or
volume when more than two objectives are employed) in the search space (ZITZLER; THIELE,
1999). Equation 2.3 presents how to calculate this indicator, where vi is the volume. Higher
hypervolumes are preferred to lower ones when the reference point is the Nadir point.

HV (S) = volume(∪|S|i=1) (2.3)

Different from other quality indicators, there are several ways to calculate the Hypervol-
ume in the literature, for example (WHILE; BRADSTREET; BARONE, 2012) and (ZITZLER;
THIELE, 1999). This is necessary due to the fact this calculation is a costly task to per-
form when several solutions are considered. So these implementations consider mathematical
properties in order to speed up the task. In fact, all of them aim to obtain a single value
that represents an area/volume/hypervolume as showed in Figure 12. In this figure, the four
non-dominated solutions used in the example in Section 2.3 are considered. So the union area
among the solutions {1, 2, 3, 4} and the Nadir point at the position (6, 12) is calculated.

Figure 12: Hypervolume
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2.4.3 R2

The R2 indicator (HANSEN et al., 1998) employs the standard weighted Tchebycheff
function in order to calculate the mean difference in utility values. This indicator simultaneously
evaluates the convergence and diversity of an approximation set (KNOWLES; CORNE, 2002).
Lower R2 values are preferred to lower ones.

Equation 2.4 presents R2, S is the solution set,W the weight vector, and Z∗ the reference
point set. Inside the keys is the standard weighted Tchebycheff function, which calculates the
max absolute difference value between an objective in the ideal point Z∗j and a given solution
objective value sj.

R2(S,W,Z∗) = 1
|S|

∑
w∈W

min
s∈S

{
max1≤j≤no wj|Z∗j − sj|

}
(2.4)

2.4.4 UD

The Uniform distribution of non-dominated population evaluates how distributed are the
solutions along with the search space. The distribution should be as uniform as possible to
achieve consistent gaps among neighboring individuals in the population (TAN; LEE; KHOR,
2002). This quality indicator is calculated according to Equation 2.5.

UD(S) = 1
1 + Snc

(2.5)

where Snc is the standard deviation of the niche count of the overall set of
NonDominated(S) (Equation 2.6).

Snc(ND) =

√√√√∑|ND|
i (nc(ndi)− nc(ND))2

|ND| − 1 (2.6)

where |ND| is the size of the non-dominated set ND of the population S; nc(ndi) is the
niche count of ith a solution;

nc(ndi) =
|ND|∑
j,j,i

f(i, j), f(i, j) =

 1 if dist(i, j) < σshare

0 otherwise

 (2.7)
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and nc(ND) is the mean value of nc(ndi)

nc(ND) =
∑|ND|

i nc(ndi)
|ND|

(2.8)

where dist(i, j) is the distance between individual i and j in the objective domain.

2.4.5 GD

The Generational Distance (SRINIVAS; DEB, 1994) corresponds to the sum of the Eu-
clidean distances between the outcome population of solutions S and the solutions in Pareto
Front P . In general, it is impossible to find all solutions on a continuous Pareto Front (JIANG
et al., 2014); in this case, the Pareto Front is previously known. Equation 2.9 presents how
to calculate the GD indicator, where d is the Euclidean distance from i ∈ S to q ∈ P . Lower
GD values are better than higher ones.

GD(S, P ) = (∑|S|i=1 d
q
i )

1
q

|S|
(2.9)

Usually, q is defined as 2 in the literature.

2.4.6 IGD and IGD+

The Inverted Generational Distance (ZITZLER et al., 2003) is very similar to the GD.
Instead of calculating the Euclidean distance from S to P , as GD does, this indicator calculates
the Euclidean distance from P to S. Equation 2.10 presents how to calculate the IGD indicator.
Similarly to the GD indicator, lower values are preferred to higher ones.

IGD(S, P ) = (∑|P |i=1 d
q
i )

1
q

|P |
(2.10)

The Inverted Generational Distance Plus (ISHIBUCHI et al., 2015) is the low computa-
tional cost version of its predecessor, which also considers the dominance relationship between
the Pareto-optimal reference set and a given population of solutions. For this purpose, when a
solution set P is better than another solution set S in terms of the Pareto dominance relation,
S is never evaluated as being better than P by the IGD+ indicator. In this case, S can be
evaluated as being better than P by the IGD indicator (ISHIBUCHI et al., 2019).
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2.4.7 Spread

The Spread (SRINIVAS; DEB, 1994), or ∆ metric, evaluates the distribution of non-
dominated solutions over the Pareto Front (MAASHI; ÖZCAN; KENDALL, 2014). Equa-
tion 2.11 presents how to calculate the Spread indicator, where di is the Euclidean distance
between solutions in sequence, d is the distance mean of df , dl are the minimum Euclidean
distances from solutions in S to the extreme (bounding) solutions of P (JIANG et al., 2014).
Lower spreads values are preferred to lower ones.

∆(S, P ) = df + dl +∑|S|−1
i=1 |di − d|

df + dl + (|S| − 1)d
(2.11)

2.4.8 HR

The Hyper-area Ratio (HR) (VELDHUIZEN, 1999) employs the hypervolume of a solution
set A divided by the hypervolume value of a Reference Front B. Higher values are preferred
to lower ones.

HV (S, P ) = HV (A)
HV (B) (2.12)

2.4.9 ER

Pareto Dominance Indicator (ER) (GOH; TAN, 2009) considers the intersection of the
solution between two given sets A and B, which can be provided by different algorithms or
used to compare a solution set S with a Pareto Front PF , and then |S ∩PF |. Equation 2.13
presents ER, where the size of the intersection is compared with the size of B. Higher values
are preferred to lower ones.

ER(A,B) = |A ∩B|
|B|

(2.13)

2.4.10 AE

The Algorithm Effort quality indicator can be defined as the ratio of the total number of
function evaluations Neval over a fixed period of simulation time Trun (TAN; LEE; KHOR,
2002). This indicator is interesting to evaluate how fast a MOEA can generate solutions.
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AE = Trun

Neval

(2.14)

2.4.11 Discussion

When evaluating the performance of a MOEA, there are two main goals to pursue: (1)
convergence: closeness of the provided non-dominated solution set to the Pareto optimal front
and (2) divergence: diversity of the obtained solution set (with a good distribution) along
the Pareto optimal front (ELARBI et al., 2017). Table 2 summarize the quality indicators
presented. In this table, an additional column shows whether PF (PFtrue or PFknown) is
necessary (specifying the previous best-known solution set) and other shows if this quality
indicator has to be maximized or minimized.

Table 2: Quality indicators comparison

Quality Indicator Convergence Divergence Require PF Maximizing/Minimizing
AE minimizing
GD X X minimizing
IGD X X X minimizing
IGD+ X X X minimizing
Hypervolume X X maximizing
HR X X maximizing
ER X X maximizing
RNI X maximizing
R2 X X minimizing
Spread X minimizing
UD X maximizing

As mentioned in the introduction, MOEAs are used to solve MOPs. In the sequence, we
detail the benchmarks and real-world problems that were used in the experiments of this work.

2.5 Multi-Objective Problems

There are several MOPs available in the literature, varying from logistics, engineering and
mathematics. Here, some of them are introduced. They are here classified as benchmarks or
real-world problems.
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2.5.1 Benchmarks

Artificially constructed test problems offer many advantages over real-world problems for
the purpose of general performance testing (BRADSTREET et al., 2007). With generic test
suites, researchers can compare their multi-objective numerical and combinatorial optimiza-
tion problem results (regarding effectiveness and efficiency) with others, over a spectrum of
algorithms instances (COELLO, 2007).

Over the years, several benchmarks have been proposed. In (ZITZLER; DEB; THIELE,
2000), the ZDT suite was introduced; it is composed of some bi-objective continuous optimiza-
tion problems that could be instantiated considering a different number of decision variables.
However, this benchmark does not provide enough difficulty (HUBAND et al., 2006).

This was the motivation for the proposal of the DTLZ (DEB, K. et al, 2005) benchmark,
which is composed of seven continuous optimization problems. In this suite, all the problems
can be instantiated considering a different number of objectives and decision variables.

The CEC2009 (ZHANG et al., 2008), also named as UF, is a continuous optimization
benchmark composed of ten bi-objective problems which can be instantiated using a different
number of decision variables.

The Walking Fish Group (HUBAND et al., 2006) (WFG) benchmark is a flexible and
scalable suite for continuous optimization, composed of nine problems with different Pareto
optimal geometry, separability (if a Pareto front is disconnected or not) and modality. These
problems can be instantiated using different numbers of objectives and decision variables.

Tables 3 and 4 presents respectively scalable and non-scalable benchmark functions in
terms of objectives (no) and literature recommendations for the number of decision variables
and other parameters. These tables also show the Pareto front shape for these benchmark
functions.

2.5.2 Real-world problems

Over the years, several artificially constructed test problems have been proposed to com-
pose benchmarks for evaluating meta-heuristics. These problems offer many advantages over
real-world problems for the purpose of general performance testing (BRADSTREET et al.,
2007), by allowing users to compare the results of their algorithms (regarding effectiveness
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Table 3: Characteristics of benchmarks with scalable objectives

Problem Variables (dv) Properties
WFG1 (no− 1) ∗ 2 + 20 convex, mixed
WFG2 (no− 1) ∗ 2 + 20 convex, disconnected
WFG3 (no− 1) ∗ 2 + 20 linear, degenerate
WFG4 (no− 1) ∗ 2 + 20 concave
WFG5 (no− 1) ∗ 2 + 20 concave
WFG6 (no− 1) ∗ 2 + 20 concave
WFG7 (no− 1) ∗ 2 + 20 concave
WFG8 (no− 1) ∗ 2 + 20 concave
WFG9 (no− 1) ∗ 2 + 20 concave
DTLZ1 no+ 4 linear
DTLZ2 no+ 9 non-convex
DTLZ3 no+ 9 non-convex
DTLZ4 no+ 9 non-convex
DTLZ5 no+ 9 degenerate
DTLZ6 no+ 9 disconnected
DTLZ7 no+ 19 disconnected

Table 4: Characteristics of benchmarks with fixed amount of objectives

Problem Objectives (no) Variables (dv) Other parameters Properties
ZDT1 2 30 - convex
ZDT2 2 30 - non-convex
ZDT3 2 30 - convex, disconnected
ZDT4 2 10 - non-convex
ZDT6 2 10 - non-convex
UF1 2 30 - concave
UF2 2 30 - concave
UF3 2 30 - concave
UF4 2 30 - convex
UF5 2 30 n=10, ε=0.1 linear, disconnected
UF6 2 30 n=2, ε=0.1 linear, disconnected
UF7 2 30 - linear
UF8 3 30 - convex
UF9 3 30 ε=0.1 linear, disconnected
UF10 3 30 convex
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and efficiency) with others, over a spectrum of algorithms instantiations (COELLO, 2007).

Even if benchmarks can test and compare how algorithms successfully solve their suite
of problems, this does not guarantee these algorithms’ effectiveness and efficiency in solving
real-world problems (COELLO, 2007).

In the following, some real-world problems that were used in this work are presented.

2.5.2.1 moTSP

The traveling salesperson problem (TSP) is probably the most famous and extensively
studied problem in the field of Combinatorial Optimization (GUTIN; PUNNEN, 2006). This
problem consists of a set of cities to be visited by a salesperson. Here, from a starting city
(e.g., the hometown), the salesperson has to visit all cities once, and then returning to the
starting city. The challenge of the problem is to reduce the cost of visiting the cities by finding
the best order to visit. Figure 13 presents an example of a TSP route departing from a starting
point, visiting all cities and returning to the starting point.

Figure 13: Traveling Salesperson Problem

Formally, the TSP problem is defined by a complete graph G(V,E), where V is the set
of ne elements composed by the nodes (or cities) to be visited and the departing node (depot
or the starting city). A is the set of edges connecting the nodes. Finally, ci,j represents the
cost necessary for going from a given node i to the node j. Thus, ∑ne

i=0 ci,j determines the
tour cost, which is the objective function in this problem.

The Multi-objective Traveling Salesperson Problem (moTSP) (HANSEN, 2000) is a gen-
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eralization of the TSP. Here, instead of using just one cost value, the problems can use, at
the same time, several costs. Thus, costs as distances, the necessary time to deliver, or other
relevant objectives make TSP a multi-objective problem.

The TSP can either be considered a real-world problem or a benchmark. The difference is
how the problem is instantiated. For example, if latitude, longitude, and real-world distances
between cities are considered, then we have a real-world problem. If artificial values are
considered, then we have a benchmark.

2.5.2.2 Crashworthiness

The vehicle crashworthiness problem (LIAO et al., 2008) is a three-objective non-
constrained problem where the crash safety level of a vehicle is optimized. In this problem,
a higher safety level means how well a vehicle can protect the occupants from the effects
of a frontal accident. In this problem, there are five decision variables (represented as ti
in Figure 14) that represent the thickness of reinforced members around the car front; and
three objective functions to minimize: (i) the mass of the vehicle, (ii) integration of collision
acceleration in the full-frontal crash, (iii) the toe-board intrusion in the 40% offset-frontal
crash.

Figure 14: Vehicle crashworthiness problem, adapted from (LIAO et al., 2008)

2.5.2.3 Car Side Impact

The Car Side Impact Problem (JAIN; DEB, 2014) (Figure 15) is a three-objective con-
strained problem which involves minimizing the weight of the car, the pubic force experienced
by a passenger and the V-Pillar average speed, responsible for withstanding the impact load.
This problem is defined as eleven decision variables describing the thickness of several car parts,
such as B-pillars (inner and reinforcement), floor side inner, cross-members, door (beam and
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reinforcement), roof rail, the material of B-Pillar and floor side inner, and variables representing
the barrier: the height and hitting position.

Figure 15: Car Side Impact, adapted from (JAIN; DEB, 2014)

2.5.2.4 Machining

The machining problem (GHIASSI et al., 1984) formulates machining recommendations
under multiple criteria. This problem considered tests on the aluminum cut with VC-3 carbide

cutting tools as a basis to test the approach, which has significant automotive industry appli-
cations (GHIASSI et al., 1984). This problem has three decision variables, where speed (v),
feed (j) and depth of cut (d) are attributes considered in their definition. Four objectives are
considered: (i) minimizing the surface roughness; (ii) maximizing the surface integrity, which
refers to the amount of undamaged primary silicon at and immediately below the surface; (iii)
maximizing the tool life, which is generally defined as the machining time to reach a fixed
amount of uniform flank wear; and (iv) maximizing the metal removal rate, which is a measure
of parts made per unit machining time.

2.5.2.5 Water

The Water Resource Planning (TAPABRATA; KANG; SEOW, 2001) (Figure 16) is a five-
objective constrained problem which involves optimal planning for a storm drainage system
in an urban area. The problem variables are the local detention storage capacity x1, the
maximum treatment rate x2 and the maximum allowable overflow rate x3. There are five
objective functions to be minimized: (i) the drainage network cost, (ii) the storage facility cost,
(iii) the treatment facility cost, (iv) the expected flood damage cost, and (v) the expected
economic loss due to flood.
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Figure 16: Water problem

2.5.2.6 Four Bar Truss

Four Bar Truss (STADLER; DAUER, 1993) is a continuous optimization problem with four
decision variables. Figure 17 presents this problem composed of the following two objectives:
(i) The volume of the truss (ii) the displacement ∆ of the joint connecting bar 1 and 2 subject
to given physical restraints on the feasible cross-sectional areas {x1, x2, x3, x4} of the four bars.
L and F are respectively the length of each bar and force of magnitude (here F = 10kN).

Figure 17: Four Bar Truss, extracted from (ENGAU, 2007)

2.5.2.7 Golinski

Golinski (GOLINSKI, 1970) is a gear reducer problem modeled as a bi-objective continuous
optimization problem and composed of seven decision variables and eleven constraints. The
speed reducer problem presents the design of a simple gearbox of a small aircraft engine,
which allows the engine to rotate at its most efficient speed. This has been used as a testing
problem for nonlinear optimization methods in the literature (GUNAWAN; FARHANG-MEHR;
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AZARM, 2003).

2.5.2.8 Quagliarella

Quagliarella (QUAGLIARELLA; VICINI, 1998) is a wing design modeled as a bi-objective
continuous optimization problem where the two objectives are related to aerodynamic and
structural requirements. The resulting wing is then modified to further reduce its aerodynamic
drag. This problem is composed of sixteen decision variables and has a Pareto shape defined
as disconnected and convex.

2.5.2.9 Poloni

Poloni (POLONI; MOSETTI; CONTESSI, 1996) is the design of a multi-point airfoil
modeled as a bi-objective continuous optimization problem where two objectives are considered:
(i) to have a high lift at low speed (ii) having a low drag at transonic speed. This problem
is composed of two decision variables and has a Pareto shape defined as disconnected and
concave.

2.5.2.10 The Black Box Optimization Competition

The Black Box Optimization Competition (IFN, 2017) consists of ten challenging real-
world bi-objective optimization problems from various domains. Table 5 presents these prob-
lems with their number of variables. All the problems are in continuous space.

Table 5: The Black Box Optimization problems

Problem name Source

Vibrating Platform Design (GUNAWAN; AZARM, 2005; IFN, 2017)
Optical Filter (GIOTIS et al., 2001; IFN, 2017)
Welded Beam Design (DEB; SUNDAR, 2006; IFN, 2017)
Disk Brake Design (YANG, 2013; IFN, 2017)
Heat Exchanger (IFN, 2017)
Hydro Dynamics (IFN, 2017)
Area Under Curve (IFN, 2017)
Kernel Ridge Regression (IFN, 2017)
Facility Placement (IFN, 2017)
Neural Network Controller (IFN, 2017)
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2.6 Discussion

Table 6 summarizes all the mentioned real-world problems by describing the number of
objectives, variables and constraints. These problems were selected due to the diversity of
areas contemplated. For example, CarSideImpact, CrashWorthiness, and Disk Brake Design

are problems from mechanical engineering. Water and Hydro Dynamics belong to Naval
Engineering. Facility Placement and moTSP come from logistics. Kernel ridge regression

and Neural Network controller are from Computer Science. Thus, using several problems from
different areas give us a better way to place newly proposed algorithms in a realistic scenario. It
also makes these algorithms more attractive to researchers from these areas since they usually
aim to solve their problems rather than test new algorithms.

Table 6: A brief description real-world multi-objective problems containing the number of
objectives, variables and constraints

Problem name Objs. Variables. Constraints

moTSP Scalable Scalable Scalable
Water 5 3 7
Machining 4 3 3
CarSideImpact 3 7 0
CrashWorthiness 3 5 0
FourBarTruss 2 4 0
Golinski 2 7 11
Quagliarella 2 16 0
Poloni 2 2 0
Vibrating Platform Design 2 5 0
Optical Filter 2 11 0
Welded Beam Design 2 4 0
Disk Brake Design 2 4 0
Heat Exchanger 2 16 0
Hydro Dynamics 2 6 0
Area Under Curve 2 10 0
Kernel Ridge Regression 2 5 0
Facility Placement 2 20 0
Neural Network Controller 2 24 0

2.7 Conclusion

This chapter presented several concepts related to Evolutionary Computation, such as
optimization, multi evolutionary algorithms, quality indicators and multi-objective problems.
All these subjects are necessary to understand this work.
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The next chapter introduces the algorithm selection problem and a way to tackle this
problem: hyper-heuristics, the category in which this present work belongs.
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3 ALGORITHM SELECTION PROBLEM

It has long been recognized that there is no single optimization algorithm that can achieve
the best performance in all problem instances, and algorithms perform differently depending
on the problem characteristics (WOLPERT; MACREADY, 1997). However, it is possible to
achieve better results, on average, across many different classes of a problem, when we tailor
the selection of an algorithm to the characteristics of the problem instance (SMITH-MILES et
al., 2009).

Moreover, selecting an algorithm to solve an optimization problem instance is not a trivial
task. Usually, a tuning method is necessary, if there is no previous knowledge about which
algorithm to use and what is the recommended algorithm configuration to solve a given op-
timization problem. The tuning task (Figure 18) consists of solving an optimization problem
using different algorithm instances, taking their results, and finding the best according to a
quality measure.

Figure 18: Tuning Task

There are also motivations from the No Free Lunch Theorem which establish that "for
any algorithm, any elevated performance over one class of problems is an offset by diminished
performance over another class" (WOLPERT; MACREADY, 1997).
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3.1 Definition

Rice (RICE, 1976) first posed the question: " Which algorithm is likely to perform best for

my problem?". From this point, he designed The Algorithm Selection Problem (ASP). The
basic definition for ASP is defined as ASP = 〈P,A,E〉 which is composed by the following
elements:

• Problem Space (P): A vast and diverse set of problems with all possible problem in-
stances;

• Algorithm Space (A): The vast and diverse set of all possible algorithms which can be
used to solve a problem instance;

• Performance Evaluator (E): The quality indicator set used to measure the performance
of a particular algorithm for a given problem instance.

Figure 19 shows the ASP. In this figure, a selection S(p) has to be made for the problem
instance p ∈ P considering the algorithm space A. The algorithm selection considers perfor-
mance measures in E to get the algorithm performance for each a ∈ A by mapping e(a, p)
and finally getting the value of performance r = ||e(a, p)||. R is composed by all values of
performance r.

Figure 19: Rice’s ASP basic model, adapted from (RICE, 1976)

The best algorithm selection, for example the tuning task mentioned before (Figure 18),
it can be achieved by using the equation (ai ∈A | ∀aj ∈A | ||e(ai, p)|| ≥ ||e(aj, p)||), for a
given problem instance p ∈ P.
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In (RICE, 1976), the ASP was also extended to contain the feature space (F), necessary
for some categories of problems (e.g., Classification/Regression problems). This feature space
contains measurable characteristics of the instances generated by a computational feature
extraction process applied to P . It may be viewed as a way to systematize the problem in
a basic model. In this extended ASP, there is a set of features f(p) ∈ F and the selection
mapping is given by S(f(p)). Finally, in this context the ASP is defined as 〈P,F,A,E〉.

The ASP has been extended over the years by different Artificial Intelligence areas. Among
them, we can highlight meta-learning and hyper-heuristics approaches (SMITH-MILES, 2012).

3.2 Meta-learning

In the machine learning community, the research in the field of meta-learning (learning
about learning) differs from the traditional base-learning approach in their adaptation level.
While learning at the base level is focused on accumulating experience on a specific learn-
ing task, learning at the meta-level accumulates experience in the performance of multiple
applications of a learning system (BRAZDIL et al., 2008). This area has mostly focused on
classification problems (SMITH-MILES, 2012).

Consider the following steps to solve a classification or regression problem. First, some
data have to be prepared, by cleaning and formatting procedures, and an appropriate model
has to be defined. This model is typically trained by solving a core optimization problem that
optimizes the decision variables set of the model with respect to the selected loss function,
and possibly some regularization function (BENNETT; PARRADO-HERNÁNDEZ, 2006).

Overall, the main steps of classification/regression are: (i) build a model hypothesis,
(ii) define the objective function, (iii) solve the optimization problem by finding a maxi-
mum/minimum for the objective function in order to determine the parameters of the model.
The first two steps are related to modeling problems of machine learning, while the third step
is to solve the desired model by optimization methods (SUN et al., 2019). Thus, optimiza-
tion problems lie at the heart of most machine learning approaches (BENNETT; PARRADO-
HERNÁNDEZ, 2006). To solve the inner optimization problem, researchers have been using
techniques such as Bayesian Optimization (MOČKUS, 1975), Evolutionary Algorithms (GOLD-
BERG; HOLLAND, 1988), and Gradient descent (CAUCHY, 1847), one of the most popular
algorithms in this context (RUDER, 2016).
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A meta-learning can be applied, for example, in classification (P), solved using typical
machine learning classifiers (A), such as decision trees, neural networks, or support vector
machines, where supervised learning methods have been used to learn the relationship between
the statistical and information-theoretic measures of the instances (F) and the accuracy (E) of
the classifier algorithms (SMITH-MILES, 2012). Hence, algorithm selection/recommendation
helps the user to choose the learner by generating a ranking of algorithms or indicating a single
algorithm according to their predictive performance (PAPPA et al., 2014).

3.3 Hyper-heuristics

Hyper-heuristics are defined as a high-level methodology that, given a particular problem
instance and some low-level heuristics (LLH), automatically produces an adequate combination
of them to solve the problem efficiently (BURKE et al., 2013; DRAKE et al., 2019).

Hyper-heuristics can learn how to combine LLHs by using feedback from the search process.
According to the source of the feedback, this algorithm can be classified as online or offline.
There is also hyper-heuristics which do not perform any kind of learning. Hyper-heuristics can
also be classified according to its strategy: selection or generation-based, or by the kind of
employed heuristics: construction or perturbation (BURKE et al., 2013; DRAKE et al., 2019).
Figure 20 presents the hyper-heuristic classification.

Figure 20: Hyper-heuristic classification, adapted from (BURKE et al., 2013)

In an online approach, the learning takes place while the algorithm is solving an instance of
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a problem. In offline learning, similarly to supervised learning, the knowledge is gathered consid-
ering a set of training instances that hopefully generalize to solving unseen instances (BURKE
et al., 2013). No learning hyper-heuristics use a fixed rule to select or generate low-level
heuristics (BURKE et al., 2010).

Another characteristic of hyper-heuristics is the heuristic type to be selected/generated.
Constructive heuristics build solutions by selecting a component at each search step. Perturba-
tive heuristics transform a complete solution into another complete solution, i.e., constructive
heuristics accept and generate partial solutions, while perturbative heuristics allow only com-
plete solutions (BURKE et al., 2010).

One important concept to consider when designing hyper-heuristics is the domain-
barrier (BURKE et al., 2010). The domain-barrier concept, shown in Figure 21, guarantees
that the hyper-heuristic does not have any information about the optimization problem, such
as objective functions and solutions. Thus, hyper-heuristics only has knowledge about the
number of heuristics, their performance values and other problem independent data (COWL-
ING; KENDALL; HAN, 2002). Problem information can only be accessed by LLHs. That is
necessary because using problem knowledge makes it very difficult to generalize or apply meta-
heuristics over different/new problems, causing meta-heuristics to be re-developed in order to
solve problems from a different domain (SABAR et al., 2014).

Figure 21: Domain barrier, adapted from (NOTTINGHAM, 2011)

Online Selection hyper-heuristics are the most popular hyper-heuristic subgroup (DRAKE
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et al., 2019), and it is the category where this thesis belongs. Algorithm 1 presents how a
generic online selection HH works. This algorithm has as input: an optimization problem p,
the LLH set, a criterion Sc used to define how much a llh ∈ LLH can execute, and a set
of evaluators E used to determine how well LLH performed.

First, the algorithm starts by generating random solutions for the given problem p (Line 3)
and initializing the set of evaluations R generated by a member of E. Then, while a stopping
criterion is not satisfied, the criteria Sc defines strategies for llh ∈ LLH considering the
current set of evaluations R (Line 6), elements from LLH generate new offspring (Line 7),
and evaluators in E evaluate the LLH outcome and store their evaluations in R (Line 8).

Algorithm 7: Generic Online Selection Hyper-Heuristic
1 Input: p,LLH,Sc,E
2 begin
3 Initialize the population with random solutions to solve problem p;
4 Initialize R;
5 while a termination condition is not satisfied do
6 Sc define strategies for llh ∈ LLH considering R;
7 Use one or more llh ∈ LLH to generate new solutions;
8 Evaluate solutions according to evaluators in E to generate R;
9 end

10 end

Most of the works treat heuristics, such as differential evolution, crossover and mutation
as low-level heuristics. However, some works treat algorithms as low-level heuristics (DRAKE
et al., 2019). However, by viewing heuristics as algorithms, some authors have occasionally
tried to argue for the absolute superiority of one heuristic over another (BURKE et al., 2003).
In this case, the term ’heuristic’ is sometimes used to refer to a whole algorithm and it is
sometimes used to refer to a particular decision process sitting within some repetitive control
structure (BURKE et al., 2003). This present work belongs to this category.

If we considerate online selection hyper-heuristics for choosing algorithms, there are two
possibilities for dealing with Evolutionary Algorithms (as LLHs): (i) the Sc defines one llh ∈
LLH to run by turn, and before running, it receives the full main population of solutions,
generates new solutions and update this population, and then return the new population to
the HH. Chapter 6 presents some HHs of this category; (ii) the Sc defines a set of LLHs to act
on the same population at the same time. For this purpose, it splits the main population into
subpopulations, sends each subpopulation to one llh. So, each llh generates new solutions,
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updates the subpopulation, and returns it to the HH. This thesis belongs to this last category.

3.4 Meta-learning vs Hyper-heuristics

Meta-learning and hyper-heuristics are, in fact, similar because both tackle the ASP.
However, they differ in how they deal with an optimization problem. Hyper-heuristics are
focused on selecting heuristics or meta-heuristics aiming to solve optimization problems, while
meta-learning is more concerned about selecting or combining algorithms to solve tasks such
as classification, the most studied task in meta-learning (PAPPA et al., 2014).

Aiming to solve optimization problems, a hyper-heuristic can be designed to select heuris-
tics to solve inner optimization existing in classification/regression problems. Hyper-heuristics,
however, has not been designed for selecting/generating machine learning models, the task
well performed by meta-learning approaches. For example, two well-known algorithms that
follow this approach are bagging and boosting (PAPPA et al., 2014).

In terms of meta-learning, some research employs voting methods in order to solve clas-
sification problems. For example, in (DIMITRIADOU; WEINGESSEL; HORNIK, 2002), the
authors proposed a voting scheme for cluster algorithms allowing several runs of cluster algo-
rithms resulting in a shared partition and aiming to tackle the problem of choosing an appro-
priate clustering method. In (SEVILLANO; ALÍAS; SOCORÓ, 2007), the authors designed
a soft cluster ensemble that ranks the instances according to their membership probability
concerning each cluster, and conducted thorough experimental comparisons on voting-based,
in this case, the Borda voting scheme. In (DOMÍNGUEZ; CARRIÉ; PUJOL, 2009), the au-
thor also considered Condorcet methods and got similar results as obtained by Borda. These
mentioned works also tackle the algorithm selection problem using voting procedures, which
is similar to what this thesis is concerned about. However, differently from the mentioned
work, this thesis aims to propose a hyper-heuristic, and by doing that, focus on optimization
problems, more especially, multi-objective optimization.
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3.5 Conclusion

This chapter introduced the Algorithm Selection Problem concepts, one of the most im-
portant theoretical backgrounds for meta-learning and hyper-heuristic. Hyper-heuristics were
also defined and a generic model for online selection hyper-heuristics was defined.

The next chapter presents multi-agent and voting concepts. This comprehension is also
necessary for the understanding of further chapters.
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4 MULTI-AGENT SYSTEMS AND SOCIAL CHOICE THEORY

This present chapter introduces the concept of multi-agent systems (Section 4.1) and
Artifacts, necessary to understand the proposed work. This chapter also introduces Social
choice theory concepts (Section 4.2), in special the voting procedures Borda, Copeland and
Kemeny, employed by the proposed hyper-heuristic (Chapter 5).

4.1 Multi-Agent Systems

An agent is a computer system that is situated in some environment, and that is
capable of autonomous action in this environment in order to meet its delegated objec-
tives (WOOLDRIDGE, 2009). An agent perceives the environment by sensors in order to
understand it. Thus, based on his perceptions and considering preconditions, the agent can
plan how to act, that means, use or not on a given actuator in order to update the environment.
Figure 22 show the agent-environment interaction.

Figure 22: Agent-environment interaction, adapted from (RUSSELL; NORVIG, 2010)

A multi-agent system (MAS) is one that consists of a number of agents, which interact
with one another, typically by exchanging messages through some computer network infras-
tructure (WOOLDRIDGE, 2009). According to (DEMAZEAU, 1995), a multi-agent system
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can be developed considering four distinct dimensions, making a MAS a composition of Agents
+ Environment + Interactions + Organization, or A + E + I + O, the Vowel methodology.
The Vowel methodology elements have the following characteristics:

• The agent models, or agent architectures, range from simple fine-grained automaton to
complex coarse-grained knowledge-based systems (DEMAZEAU; MULLER, 1990);

• The environments are domain dependent (DEMAZEAU, 1995);

• Interaction structures and languages ranging from physics-based interactions to speech
acts (DEMAZEAU, 1995);

• Organizations range from dynamic ones inspired by biological studies, to more governed
by social laws ones inspired by sociological studies (DEMAZEAU, 1995).

Thus, a multi-agent system will be composed of several agents, an environment, a set of
possible interactions, and possibly at least one organization (DEMAZEAU, 1995).

The task of building multi-agent systems often makes necessary the specification about
how agents percept the environment, communicate with one another, and update the envi-
ronment. Some interesting approaches can be found in the literature and, among them, the
concept of an Artifact.

Artifacts are non-autonomous, function-oriented, stateful entities, that represent the en-
vironment elements. They are controllable, observable, and used to model the tools and
resources used by agents (RICCI, A. and VIROLI, M. and OMICINI, A., 2007). Thus, artifacts
can be used to design and program a suitable agent working context or environment: a set of
objects (in the wide sense) and tools that agents can share and use to support their individual
as well as social activities (RICCI; VIROLI; OMICINI, 2006).

Due to their characteristics, artifacts can be employed to provide communication, such as
messages and blackboards, and providing tools for coordination, such as auctions or elections.

4.2 Social Choice Theory

Social Choice theory is the study of systems and institutions for making collective
choices (KELLY, 2013). This theory is responsible for studying voting systems and their
applications.



Multi-Agent Systems and Social Choice Theory 51

A voting system is a very common way of resolving disagreements, determining common
opinions, choosing public policies, electing office-holders, finding winners in contests, and
solving other problems of amalgamating a set of (typically individual) opinions (NURMI, 2010).

The simplest way to perform an election is majority voting. However, in an election, every
candidate can be beaten by others based on sincere simple majority voting. In order to solve
this problem, different voting methods were proposed. In the following, some of them are
presented.

4.2.1 Borda Count method

The Borda Count (BORDA, 1784) is a voting method that uses a ranking of preferences,
which means, electors rank their candidates preferences. Thus, for each ordering, the best
candidate receives n− 1, where n is the number of candidates, the second candidate receives
n − 2, the third n − 3, and so on. The chosen candidate is the one with the highest sum of
preference points. Equation 4.1 shows how each candidate is ranked, where m is the number
of electors, n the number of candidates, and ri,j is the rank position of a given candidate i
according to an elector m from the electors group M .

rank(i) =
m∑

i=1
n− ri,m (4.1)

After we have Borda scores for all candidates, they are sorted from higher to lower in order
to generate the final ranking. The selected candidate is the top-ranked candidate, as shown
in Equation 4.2.

winner(i) = ∀j ∈ Nrank(i) > rank(j) (4.2)

4.2.2 Condorcet methods

The Condorcet’s principle says that if a candidate defeats every other candidate in pairwise
comparisons (a Condorcet winner), it must be elected (MOULIN, 1988). Thus, after every
voter vote, a pairwise comparison is performed. In the following example, we have three
different candidates and voters. Then we perform the one-on-one contest for each candidate
in all voters.
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• Candidate 1 vs Candidate 2 according to Voter 1;

• Candidate 1 vs Candidate 2 according to Voter 2;

• Candidate 1 vs Candidate 2 according to Voter 3;

• Candidate 1 vs Candidate 3 according to Voter 1;

• Candidate 1 vs Candidate 3 according to Voter 2;

• Candidate 1 vs Candidate 3 according to Voter 3;

• Candidate 2 vs Candidate 3 according to Voter 1;

• Candidate 2 vs Candidate 3 according to Voter 2;

• Candidate 2 vs Candidate 3 according to Voter 3;

Thus, the Condorcet’s principle has as the fundamental idea that the opinion of the
majority should prevail, at least when majority comparisons pinpoint an unambiguous win-
ner (MOULIN, 1988).

4.2.2.1 Copeland method

The Copeland Voting method (COPELAND, 1951) follows the Condorcet’s principle. In
order to follow this principle, Copeland’s method ranks the alternatives according to their
score in the sum of rows in the antisymmetric matrix of the Condorcet relation (POMEROL;
BARBA-ROMERO, 2012).

To perform a Copeland voting, first we create the Condorcet’s pairwise comparison among
candidates. For example, considering two given candidates ci and cj, the pairwise is calculated
according to:

S(i, j) =


1 if ci is better than cj

−1 se ci is worse than cj

0 otherwise


(4.3)

After calculating all pairwise comparisons, for all candidates (ci), we find the candidate
Copeland score according to:
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CS(i) =
∑
i,k

S(i, k) (4.4)

Posteriorly, we have Copeland scores for all candidates. Then, the Copeland scores are
sorted from higher to lower in order to generate the final ranking. The selected candidate is
the top-ranked candidate, as shown in Equation 4.5.

winner(i) = ∀j ∈ NCS(i) > CS(j) (4.5)

4.2.2.2 Kemeny-Young method

The Kemeny-Young voting procedure (KEMENY, 1959) also follows the Condorcet’s prin-
ciple. So, this procedure also starts the Condorcet pairwise comparison, generating for each
elector a ranking of preferences. For example, given four candidates a, b, c and d; an elector
e1 can define his preferences as b � a � d � c, other elector (e2) can define his preference as
c � a � d � b, a third elector (e3) defines his preferences as c � a � b � d, and so on.

In the following, this voting procedure performs the sum of all pairwise preferences. For
example, all the three electors prefer a instead of d (a � d), two electors prefer c � {a, b, d},
all these comparisons will generate a sum of preferences. All possible pairwise comparison is
performed even if no elector preferred it. Table 7 shows these sums.

Table 7: Candidates comparison scores

Candidate a b c d

a - 2 1 3
b 1 - 1 2
c 2 2 - 2
d 0 1 1 -

Finally, the overall sum is created (Table 8). This overall sum is created for every possible
combination of preferences, making this ranking creation a combinatorial problem. To calculate
an overall sum for a given preference rank, we sum all comparison scores existing in the
given preference rank. For example, to calculate the overall value for the preference ranking
c � a � b � d, we need to sum the comparison scores (from Table 7) for c � {a, b, d},
resulting an overall value of 6 (2 + 2 + 2), plus a � {b, d}, resulting 5 (2 + 3), plus b � d,
resulting 2. So, the rank c � a � b � d has an overall value of 13 (6 + 5 + 2). The candidate
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elected is the one with the biggest overall value, in our case, c � a � b � d.

Table 8: Overall comparison

Ranking Overall Ranking Overall Ranking Overall
a � b � c � d 11 b � c � a � d 11 c � d � a � b 9
a � b � d � c 10 b � c � d � a 8 c � d � b � a 8
a � c � b � d 12 b � d � a � c 6 d � a � b � c 6
a � c � d � b 11 b � d � c � a 7 d � a � c � b 7
a � d � b � c 9 c � a � b � d 13 d � b � a � c 5
a � d � c � b 10 c � a � d � b 12 d � b � c � a 6
b � a � c � d 10 c � b � a � d 12 d � c � a � b 8
b � a � d � c 9 c � b � d � a 9 d � c � b � a 7

4.3 Conclusion

This chapter introduced concepts of multi-agent systems, Artifacts, Social choice theory,
and voting methods (Borda, Copeland and Kemeny).

In this thesis, multi-agent theory was considered in order to propose a distributed system,
where components compete and cooperate for computational resources. In order to make the
MAS design easier, Artifacts were employed to represent shared information. Since agents are
also competing, Voting methods were employed in order to summarize preferences and solve
disagreements.

Thus, all concepts presented here and on Chapters 2 and 3 are necessary to understand
this thesis proposal: Multi-Agent Election Based Hyper-Heuristic.
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PART II

PROPOSAL
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5 MULTI-AGENT ELECTION BASED HYPER-HEURISTIC

This chapter details the Multi-Objective Agent-Based Hyper-Heuristic (MOABHH), a
hyper-heuristic designed as a multi-agent system which employs voting concepts (Chapter 4)
in order to tackle the algorithm selection Problem (Chapter 3) for multi-objective optimization
(Chapter 2). In this approach, MOEAs (Section 2.3) are considered as LLH and multi-objective
quality indicators (Section 2.4) as voters. In the following, this approach is formalized.

A preliminary description of the model was originally published in (CARVALHO; SICH-
MAN, 2017).

5.1 General Model

Formally, in order to solve a given problem p ∈ P, MOABHH considers a set of MOEAs
(LLH) and a set of quality indicators voters (V) as agents. Each vj ∈ V assigns a voting
preference vpi,j ∈ VP for each llhi ∈ LLH. For each llhi, this preference is based on the
current population rp ∈ RP generated by the different vj to solve p.

Considering VP and a predefined voting function vote, MOABHH generates an election
outcome EO composed by all candidates sorted according to the election outcome from the
winner to losers.

With the election outcome EO, a hyper-heuristic agent can dynamically assign more or less
participation percentage pp ∈ PP on generating new solutions for a given low-level heuristic
llh ∈ LLH. Thus, this model can be instantiated using different voting methods, quality
indicators and low-level heuristics.

First, let’s extend the ASP model 〈P,A,E〉 and define the hyper-heuristic approach as
the following:

MOABHH = 〈P,LLH,RP,V,VP,EO,PP, active, vote, election, part〉,

where

• P is the optimization problem set to be solved;
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• LLH = {llhi : i ≤ n, n = |LLH|} is the set of low-level heuristics that gener-
ates new solutions1. At each time t, LLHt

active represents the set of active low-level
heuristics that generate new solutions at a given time t. This is defined according to
the function active;

• active : LLH×PPt =⇒ LLHt
active is a function that defines which llh ∈ LLH is

active at a given time t2.

• RPt = {rpk : k ≤ n} is the set of resulting populations generated by each llh ∈
LLHt

active at a given time t. For llh < LLHt
active, rpt

i = ∅ ;

• V = {vj : j ≤ m,m = |V|} is the set of voters responsible to evaluate LLHs3. A
V member can, for example, be Hypervolume, Epsilon, or IGD quality indicators for
multi-objective optimization, as described in section 2.4;

• vote : V × RPt =⇒ VPt is a voting function that, for each voter v ∈ V, generates
its voting preferences for each llh ∈ LLHt

active at a given time t. In the case where
rpt

k = ∅ we have vpt
i,j = 0;

• VPt = {vpt
i,j : i ≤ m, j ≤ n} is the set of voting preferences generated by vote4;

• VM = {Borda, Copeland,Kemeny} is the set of voting methods;

• election : VM × VPt =⇒ EOt is the election function that generates an election
outcome EOt at a given time t, by the aggregation of the set of voting preferences VPt,
given a certain voting method vm ∈ VM;

• EOt = {eot
l : l ≤ n} is the election outcome generated by the function election. Each

eot ∈ EOt is defined as a tuple eot
l =< llh, rank >, where rank ∈ [1...n];

• part : EOt ×PPt =⇒ PPt+1 is a function responsible for defining each llh ∈ LLH
its participation on generating new solutions in the next iteration;

• PP = {ppt
i : i ≤ n, ppt

i ∈ [0 . . . 100]} is the set of LLH’s participation percentage

on generating new solutions.
1LLH corresponds to A on ASP model, as described in section 3.1.
2At time 0, all llhi are active.
3V corresponds to E on ASP model, as described in section 3.1.
4VP corresponds to R on ASP model, as described in section 3.1.
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5.2 General Architecture

MOABHH is an agent-based hyper-heuristic. So, Artifacts and Agents (Chapter 4) are
used in the architecture. Figure 23 shows MOABHH’s agents interaction, where there are
three kinds of agents, who share four kinds of artifacts. In this figure, Agents are represented
by circles and Artifacts by parallelograms. Solid arrows mean writing permission and dotted
lines mean reading permission.

Figure 23: MOABHH General Architecture.
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5.2.1 Artifacts

The four kinds of artifacts present in the architecture are the following:

• The Population artifact keeps the main current population of solutions (and sub-
populations). This artifact is used by Indicator voter agents. When MOABHH starts,
the Problem Manager agent randomly generates the first population and then assigns it
to this artifact.

• The Voting pool artifact keeps all the voting preferences necessary to perform an election.
This artifact is used by voter agents and the HH (Hyper-Heuristic) Agent, who defines
which low-level heuristic win the election according to its voting rules.

• The Decision space artifact keeps all HH agent’s decisions. All decisions can be read by
a low-level heuristic agent and it defines how they have to proceed.

• The System variables artifact keeps the optimization problem; references points for
quality indicators; MOABHH variables such as population size, the number of generations
before voting (δ). This artifact is readable by all agents, and writable by the Problem
Manager Agent.

5.2.2 Agents

The three kinds of agents present in the architecture are the following:

• The Problem Manager agent is responsible for receiving all MOABHH parameters and
set them in the System Variables artifact.

• The LLH (Low-Level Heuristic) agent contains a particular meta-heuristic instance. This
agent is responsible for generating a given number of solutions in a generation, where
the number is defined by the HH agent. After generating new solutions, this agent adds
the generated solutions to Population Artifact. All generated solutions are associated
with their respective generator agent. Thus, it is possible to evaluate low-level heuristic
performance.

• The Voter agent contains an instance of a quality indicator responsible for evaluating
the LLHs outcome. Thus, all low-level heuristic agents have an associated quality value
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that can be used for voting. To vote, this agent sends a ranking of its preferences
following the quality values.

• The Hyper-heuristic agent uses information available on Voting Pool Artifact to employ
a voting method. With the electoral outcome, this agent defines how many solutions
each low-level heuristic can generate, giving to the best low-level heuristic more solutions
to generate.

5.3 Processing phases

MOABHH has three processing phases: (i) Participation control, (ii) Evaluation and vot-
ing, (iii) Population allocation. These steps are detailed next.

5.3.1 Participation control

The PP set contains values from 0 to 100 representing the percent on generating solutions
each LLH has in the next generations. In the beginning (PP0), all items from this set receive
the same value. For example, if we have five LLHs (n = 5) then each pp0

i ∈ PP0 will receive
20.

The participation is changed along with the search, following election outcomes and in-
creasing the participation for winners and decreasing it for losers. Figure 24 shows an example
of this procedure. In the first step, all low-level heuristic receives the same number of solutions
to generate. In the second and third steps, we can see that the best low-level heuristic (the
blue one) can generate more solutions than others. In the fourth step, the best low-level
heuristic was found and it is the only one executing.

The increasing/decreasing process considers the election outcome EOt, more precisely the
position that a given LLH has got in the election. First, the last candidate in the election (n)
has its decreasing calculation according to ppt

n ∗ β, where the parameter β is used to control
how substantial the decrement value will be.

Candidates with positions < n have their increment calculation according to Equation 5.2,
which implements the prf function. In this equation, for each position in the rank eot

l,rank (1
to n − 1), the proportion is calculated (Equation 5.1) in order to give higher values for best
positions.
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Figure 24: Population generation participation along the execution

fx(rank, n) =

 2n if rank = 1

2n−rank otherwise

 (5.1)

ppt+1
i = ppt

i +
fx(eot

l,rank, n)∑n
i=1 fx(eot

l,rank, n)
∗ β (5.2)

The idea behind these equations is to give more participation to the candidate who won
the election, some level of increasing for other candidates according to their positions and
decreasing the participation to the less voted candidate. These equations were designed based
on empirical studies.

5.3.2 Evaluation and voting

At every δ generations, a new election is started. Here, all Voter Agents (V) take the
current population from the Population Artifact, split it into sub-populations according to
which LLH had generated the solution. So, each sub-population rp ∈ RP represents a LLH.
After this, each Voter Agent evaluates all sub-populations according to his multi-objective
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quality indicator. This generates a set of quality values for each voter. Figure 25 presents this
process considering three LLHs as candidates. After evaluating (generating VP), the agents
send this information to the Voting Pool artifact, performing then a vote.

In MOABHH, tie-breaking between candidates is not coped by the voting method election,
then LLHs can have the same rank after the election.

Figure 25: MOABHH evaluation.

After having the voters vote, the HH Agent starts to play its role (Figure 26). This agent
is responsible for taking all the preferences (VP), and using a voting procedure (election) in
order to create an election outcome (EO). This outcome, as mentioned before, is taken into
consideration in the participation assignment. After this, all decision made by the HH Agent

is stored in the Decision Space artifact.

5.3.3 Population allocation

After the HH Agent updates participation values in PP, all LLH with participation > 0

are allowed to run for the next δ generations (the LLHactive set). Before running (Figure 27),
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Figure 26: MOABHH evaluation.

each LLH agent read its participation from the Decision Space artifact and the whole popula-
tion from the homonym artifact. During the execution, each ith LLH takes a sub-population
by selecting a total of ppt

i solutions from the current population. The HH Agent randomly
selects solutions (from the current main population) in order to compose sub-populations,
thus bad performing LLHs has more chance to not get stuck trying to generate solutions using
sub-optimal solutions. This sub-population is set as the current population in the MOEA in-
stantiated in the LLH agent. So, while the stopping criteria is not reached, that means, while
δ generations are not run, the MOEA performs all his evolutionary procedures (i.e., selection,
crossover, mutation and elitism). When the stopping criterion is reached, the inner MOEA
returns his current population, and then the LLH agent sets the new population to the Popula-
tion artifact. In this process, the surviving solutions are defined by each inner MOEA instance,
which means if a LLH agent has to generate ns new solutions, the resulting population also
will have ns solutions.

5.3.4 Population sharing

An important aspect of MOABHH is how solutions are shared among the LLH Agents.
In fact, this is the aspect that makes this hyper-heuristic also be considered as a cooperative
approach. Let’s see an example of how a population is shared, considering three agents. First,
in Figure 28 the Problem manager agent generates the first population of solutions (randomly
generated) and then assign it to the Population Artifact. In this image, one can observe that
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Figure 27: MOABHH population allocation.

these solutions (inside the big hexagon) are not generated by any LLH Agent and for this
reason, they are colored as gray here. Then, the HH Agents splits this population into three
considering the participation from Decision Space Artifact; initially, all LLHs get a same share,
as mentioned in Section 5.3.3. Finally, LLH Agents can read their population share from the
Population Artifact.

LLH Agents execute and each one generates a new population. One can observe, in
Figure 29, produced offsprings are colorized according to the color used, in this figure, for
each LLH Agent. Moreover, some solutions of the previous generations may persist (grey
elements). These solutions are stored in the Population Artifact, and the HH Agent can then
join all shares and update the population into the Population Artifact. From this point, now
we have solutions from all the LLH Agents.

Finally, in Figure 30, almost the same steps performed in Figure 28 are now performed. The
difference here lies in the fact that we are not dealing with a random population generated by
Problem Manager but by LLH Agents. Thus, HH Agent randomly splits the main population
into three. Due to the fact that the population is randomly split, LLH Agents can receive
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Figure 28: MOABHH population sharing at the first generation.

Figure 29: MOABHH population generation.
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solutions generated by another LLH Agent. This is the cooperation aspect of MOABHH:
LLH Agents compete for participation, but they share solutions with each other. However,
MOABHH keeps the relationship between solutions and the LLH that has generated them.
That means, solutions will be kept related to a LLH Agent that has generated them, even
if they are further selected in the next generations by another LLH. Thus, Voter Agents will
consider this fact when they evaluate LLH Agents.

Figure 30: MOABHH population sharing for next generations.

5.4 MOABHH Pseudocode

Algorithm 8 shows the detailed MOABHH steps. First, all agents and artifacts are initial-
ized using MOABHH parameters (Line 3). In this step, the optimization problem is instantiated
and all global variables set in System Variables artifact. The Problem manager agent then
generates a random population of solutions (Line 4). The execution continues by allocating
equal participation for all low-level heuristic agents (Line 5), so in the beginning, all LLH will
generate the same number of solutions during δ generations (Line 8). After that, all LLH
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returns its surviving population and send it to the Population Artifact (Line 9). So, while the
stopping criteria are not reached (Line 10), the current population is split into sub-populations
according to which LLH generated each solution. These sub-populations are evaluated by the
Voters in order to generate a ranking of preferences for each v ∈ V (Line 11). After this,
these preferences are set in the Voting pool (Line 12) artifact where the HH Agent can read
it, perform the voting method vm (Line 13), generate the election outcome EOt and use it to
update the participation table PPt (Line 14). At this point, the election winner increases its
participation and the losers decrease it. After updating the number of solutions to generate
(Line 16), all low-level heuristic agent executes during δ generations (Line 17) and adds new
solutions to Population artifact (Line 18).

Algorithm 8: MOABHH Pseudocode.
1 Input: p,LLH,V,VM, δ
2 begin
3 Initialize agents and artifacts;
4 Initialize the population RP with random solutions to solve p;
5 Uniformily assign participation shares in PP;
6 LLHactive ← LLH;
7 Consider PP to assign solutions from Pop ∀llh ∈ LLHactive;
8 ∀llh ∈ LLHactive execute for δ generation;
9 Update RP ;
10 while Stopping criteria are not reached do
11 Evaluators in V evaluate RP to generate VP;
12 Evaluators V send preferences VP to Voting Pool Artifact;
13 HH Agent employs election, uses VP to generate the election outcome EO;
14 HH Agent uses election to generate PP considering EO;
15 LLHactive ← LLH according to active;
16 Consider PP to assign solutions from RP ∀llh ∈ LLHactive;
17 ∀llh ∈ LLHactive execute for δ generation;
18 Update the main population RP ;
19 end
20 return Main population
21 end

5.4.1 Architecture execution design

MOABHH is designed to be a syncronized multi-agent system, which means agents have
to wait for other agents to execute. More precisely, LLH Agents execute in parallel, but they
have to wait for HH Agent to define population shares. Voter Agents also execute in parallel
but have to wait for HH Agent to take resulting population shares and set it in the Population
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Artifact. HH Agent has to wait for other agents to perform their role.

The Decision Space Artifact contains information about which agent has to execute. HH
Agent orchestrate other agents by updating this information.

5.5 Example of execution

Figure 31 presents a complete iteration for MOABBH. First, all the five LLH are run in
parallel, generating each a new population of solutions. Then, all the resulting populations
are evaluated according to all the six voter agents, sorted according to each voter agent’s
preferences and set to the voting pool artifact. For example, in the Figure 31, the quality
indicator #1 (QI#1) evaluated LLH2 as 0.993, while it evaluated LLH3 with 0.965. Thus,
since this quality indicator considers higher values as better, then LLH2 is preferable than
LLH3. Quality Indicator #2 (QI#1) considers smaller values as better, so it prefers LLH4

rather than others.

With the evaluation information, MOABHH is able to execute the election. In this example,
for didactic purposes, all of the three studied voting methods results are shown. Regarding
Borda, the count is directly calculated, providing, for example, a value of 24 for LLH2 and 15
for LLH3. Using this value, one can conclude LLH2 is the best algorithm, while LLH4 is the
fourth-ranked according to this voting method.

Considering Kemeny and Copeland, the pairwise comparison is first performed using in-
formation from the Voting Pool, where, for example, LLH2 is preferable over LLH1 according
to 4 quality indicators. Finally, Copeland runs and assign a value of 4 for LLH2 (which is
also the highest) and 1 to LLH3 and LLH1 making this two draw. For Kemeny, all possible
combinations of candidate sequences are tested, and the sequence with the highest score (46)
is selected. In this sequence LLH2 is the first-ranked while LLH3 is the third.

We can see they diverge which one candidate is the second-best: Copeland considers
LLH3 and LLH1 tied, Borda considers LLH3, while Kemeny considers LLH1 as the second-
best. This also happens for other positions in other election outcome positions. Finally,
the election outcomes are taking into consideration by Equations 5.1 and 5.2 and each LLH
participation updated. It is worth mentioning these voting methods are never run together
since MOABHH can only employ one voting method per time.
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Figure 31: MOABHH Example.
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5.6 Conclusion

This chapter detailed this thesis proposal detailing the model and the architecture. The
next chapter presents the related work and details about state-of-art algorithms considered in
this thesis.
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6 RELATED WORK

Applying meta-heuristics is not a trivial task, and over the years, several attempts have
been proposed to diminish the effort on choosing and configuring an algorithm. Here we can
cite two approaches: (i) parameter control and (ii) hyper-heuristics.

The parameter control (KARAFOTIAS; HOOGENDOORN; EIBEN, 2015b) approch fo-
cuses on diminishing the effort on setting up parameters by automatically setting them. These
work usually employ fixed heuristics and focus on controlling their parameters (KARAFO-
TIAS; HOOGENDOORN; EIBEN, 2015b). For example, controlling mutation rates (VAFAEE;
NELSON, 2010; BACK, 1992), crossover rates (SRINIVAS; PATNAIK, 1994) and population
sizes (SMORODKINA; TAURITZ, 2007; EIBEN; MARCHIORI; VALKÓ, 2004; HARIK; LOBO,
1999; HINTERDING; MICHALEWICZ; PEACHEY, 1996) for genetic algorithms. There are
also some work with focus on controlling multiple parameters (EIBEN et al., 2007; KARAFO-
TIAS; HOOGENDOORN; EIBEN, 2015a) such as mutation rate, crossover rate, the population
size and size of the selection tournament.

Research from parameter control will not be detailed in this chapter since they are not
directly related to this thesis. Concerning hyper-heuristic, after analyzing this subject literature,
we can classify the proposed approaches, according to which component is employed as low-
level-heuristic, in two groups: (1) Heuristic as LLH (2) Meta-heuristics as LLH. Both these
groups can also be split into agent-based and non-agent-based approaches, as presented next.

A preliminary literature review was published in (CARVALHO; SICHMAN, 2019).

6.1 Group 1: Heuristics as LLH

The first group has the majority of the research in the literature (MAASHI; ÖZCAN;
KENDALL, 2014; DRAKE et al., 2019). As mentioned above, they are here classified as
agent-based and non-agent-based.
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6.1.1 Agent-based approaches

Considering agent-based approaches, Ouelhadj and Petrovic (OUELHADJ; PETROVIC,
2010) employed search operators, such as Swap, Inversion, Insertion, and Permutation, as LLH
agents to solve Permutation Flow Shop, a single-objective discrete optimization problem. This
is a cooperative hyper-heuristic, where the heuristic agents perform a local search through
the same solution space starting from the same or different initial solution and using different
low-level heuristics. The agents exchanges their best solutions (according to the objective
function). After a generation, the best solutions are selected from all agents. This approach
performs a greedy selection strategy to select an LLH to execute.

Meignan et al. (MEIGNAN; KOUKAM; CRÉPUT, 2010) propose a selection hyper-
heuristic where agents are responsible for concurrently explore the search space of an op-
timization problem in a cooperative way, where agents organized in a coalition cooperate by
the exchanging of information about the search space and their experiences in order to improve
agents behaviors. To perform the search, an agent uses several heuristics, which are sched-
uled by an adaptive decision process, based on heuristic rules adapted along the optimization
process by individual learning. In this approach, a search agent keeps three solutions: the
current, the best-found solution of the agent and the best solution of the entire coalition, and
it can employ several operators on its current solution. This approach was applied to solve
the Vehicle Routing Problem (VRP). In this work, agents cooperate intensively due to the use
of coalitions. Moreover, each agent had a set of heuristics differently from the one used in
Ouelhadj and Petrovic’s work.

6.1.2 Non-Agent-based approaches

In this section, non-agent-based approaches are explained, especially research that treated
heuristics or algorithm components (no complete algorithm instances) as low-level-heuristics.

In (COWLING; KENDALL; SOUBEIGA, 2001), the authors proposed the Choice Function,
an equation responsible for rank heuristics considering the algorithm performance, in this case,
a fitness function for a mono-objective problem, and the computational time. This approach
was applied to the sales summit problem (the problem of matching suppliers to customers).
The hyper-heuristic was responsible for controlling ten operations (LLHs), including: removing
a delegate from a meeting with a particular supplier, adding a delegate to a supplier to allow
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them to meet and remove meetings from a supplier who has more than their allocation.

In (MCCLYMONT et al., 2013), the authors presented a selection hyper-heuristic based
on Markov chains and Reinforcement Learning to select LLHs from a set of four low-level
mutational heuristics specialized in the optimization of water distribution network. In this
approach, NSGA-II and SPEA2 were employed as the MOEAs. For the performance evaluation,
the authors employed the ratio of dominating solutions produced by each LLH.

In (LI, K. et al, 2014), the FFRMAB was proposed, a variation of the original Multi-
Armed Bandit (AUER; CESA-BIANCHI; FISCHER, 2002) (MAB) where the Fitness Rate

Ranking (FRR) was proposed as reward assignment. In this hyper-heuristic, a set of Dif-
ferential Evolution operators was considered as LLH for being chosen to a fixed instance of
MOEA/D. Following the choice of DE operators, the work of (GONÇALVES et al., 2015)
proposed a hyper-heuristic based on the choice function to control a set of five Differential
Evolution operators for MOEA/D. Results showed this hyper-heuristic overcoming the perfor-
mance of the standard MOEA/D (using a single operator) when solving ten unconstrained
benchmark functions with two and three objectives. In (GONÇALVES; ALMEIDA; POZO,
2015), the authors applied a similar approach using several versions of MAB instead of using
a Choice Function. In this case, the CEC 2009 benchmark was employed for performance
evaluation. In (ALMEIDA et al., 2020) the authors evaluated three different versions of MAB
by applying them to the permutation flow shop problem. In this HH, operators were chosen
for MOEA/DD (LI et al., 2015b).

In (GUIZZO et al., 2015), the authors designed a hyper-heuristic to solve the Class Integra-
tion Test Order Problem (aO et al., 2014), a software engineering problem where nodes from
a graph have to be visited, where these nodes are the classes to be tested. This hyper-heuristic
was built using a choice function (MAASHI; ÖZCAN; KENDALL, 2014) and a Multi-Armed
Bandit (AUER; CESA-BIANCHI; FISCHER, 2002) to select a LLH from a set of nine to op-
erate together with a fixed MOEA, in this case, the NSGA-II algorithm. This set was built
by combining different crossover and mutation operators. The evaluation of LLHs was per-
formed based on the dominance relationship among parent solutions and their offspring. In
(GUIZZO; VERGILIO; POZO, 2015), this approach was tested considering SPEA2 as the
fixed MOEA. In (CARVALHO, 2015), the author tacked the same problem by creating a
hyper-heuristic based on FRRMAB (LI, K. et al, 2014) and considering the same set of LLHs.
In this case, the Multi-objective Evolutionary Algorithm Based on Decomposition (ZHANG;
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LI, 2007) (MOEA/D) was the fixed algorithm. Among all these versions, the Choice Function
applied together with NSGA-II ((GUIZZO et al., 2015) version) got the best results.

In (CASTRO; POZO, 2015), a hyper-heuristic focused on selecting the leader and archiving
method for a multi-objective Particle Swarm Optimization. In this approach, a variant of the
Choice function considers the R2 performance indicator for selecting components from two
archiving strategies in combination with three leader selection methods. The authors tested
this approach using a set of DTLZ benchmark functions with dimensions varying from 2 to 20
and presented competitive results.

In (KHEIRI; KEEDWELL, 2017), a sequence-based selection hyper-heuristic was designed
using a hidden Markov model for solving a suite of high school timetabling problems. This
approach selects LLHs considering previous invoked LLHs performance and then learning ef-
fective sequences of LLHs. The approach updates the scores using a Reinforcement Learning
procedure.

6.2 Group 2: Meta-heuristisc as LLH

The second group is where this thesis takes place. Their components are here also classified
as agent-based and non-agent-based.

6.2.1 Agent-based approaches

Cadenas et al. (CADENAS; GARRIDO; MUNOZ, 2007) introduced a cooperative multi-
agent meta-heuristic approach, where agents communicate their best solutions using a common
blackboard. This blackboard is monitored by a coordinator agent who is responsible for mod-
ifying meta-heuristic agent behaviors based on fuzzy rules, which take into account algorithm
performance in the search. The authors tested their approach using 0/1 knapsack problems.

Malek (MALEK, 2010) proposes a multi-agent hyper-heuristic to solve several combi-
natorial problems by considering the Genetic Algorithm, Tabu Search, Simulated Annealing,
Particle Swarm Optimization, Ant Colony Optimization as algorithm agents. In this approach,
there is also a Problem agent, a Solution Pool agent (responsible for keeping all solutions), and
an Adviser agent, an agent who provides parameter settings for the algorithms and receives
reports from them. All algorithm agents of the same kind are associated with a common
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Adviser agent.

Acan and Lotfi (ACAN; LOTFI, 2016) propose a collaborative hyper-heuristic architec-
ture designed for multi-objective continuous optimization problems. In their approach, the
population of solutions is split into sub-populations based on Pareto dominance, and then
these sub-populations are assigned each one to a meta-heuristic agent, based on a cyclic or
round-robin order, making each meta-heuristics agent operate on a sub-population in subse-
quent sessions. Meta-heuristic agents have their own population of non-dominated solutions
extracted in a session, while there is also a global population of solutions keeping all non-
dominated solutions found in the search. This study set MOGA, NSGAII, SPEA2, MODE,
IMOPSO, AMOSA as meta-heuristic agents, and it was evaluated considering the CEC2009
benchmark.

Nugraheni and Abednego (NUGRAHENI; ABEDNEGO, 2016) propose an approach to
select one of three agent Hyper-heuristics based on Genetic Programming (GPHH agent),
Genetic Algorithm Hyper-Heuristic (GAHH agent), and Simulated Annealing Hyper-Heuristics
(SAHH agent). These HH agents choose some low-level heuristics and work in the search
space of heuristics rather than a space of solutions directly.

Martin et al. (MARTIN et al., 2016) propose a multi-agent hyper-heuristic where each
agent implements a different meta-heuristic/local search combination. These agents also
adapt themselves along with the search by using a proposed cooperation protocol based on
reinforcement learning and pattern matching. Two kinds of agents are employed: launcher and
meta-heuristic agents. The launcher is responsible for instantiating and keep the optimization
problem, set up algorithms, and create initial solutions. The meta-heuristic agent contains
an algorithm responsible for searching collectively for good quality solutions. The authors
evaluated their approach using Permutation Flow Shop, CVRP and Nurse Rostering mono-
objective problems, while employing meta-heuristic agents.

6.2.2 Non-Agent-based approaches

In (VRUGT; ROBINSON, 2007), the authors proposed AMALGAM (a multi-algorithm
genetically adaptive multi-objective), a cooperative search approach where meta-heuristics
run simultaneously for generating offspring from a population share. This approach work
as following: First, a random initial population is generated, then each algorithm generates
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an offspring with a predefined size. AMALGAM then takes all the generated solutions and
compares them with the previous population in order to generate the current population of
solutions. The participation in generating new solutions is updated according to the number
of surviving solutions from each MOEA to in the mating pool. There are some similarities
between this thesis and ALMAGAM. Both consider parallel algorithms generating solutions
from a shared population. The difference between them lies in the fact ALMAGAM by itself
performs the elitism procedure (decides which solutions should survive in the next population),
while this thesis approach lets each meta-heuristic perform their elitism. Another difference is
how they compute the participation. In this thesis approach Social Choice Theory is employed
to summarize several quality indicators evaluations, while in ALMAGAM, only one criterion is
considered: the Pareto Dominance.

In (VÁZQUEZ-RODRÍGUEZ; PETROVIC, 2012), the authors combined a genetic algo-
rithm with a mixture experiment to create a hyper-heuristic. A mixture experiment is a design
of experiments technique that allows to exploit accumulated knowledge efficiently and to ex-
press it as a probability (CORNELL, 2011). This hyper-heuristic selects solutions to compose
the main population applying four different selection criteria. Each criterion was used consid-
ering an associated probability based on its performance, calculated during the search.

In terms of performance, the three following works are considered the state-of-art for
selecting the most suitable multi-objective algorithm, specially HHRL. Because of that, these
works will be detailed in the sequence.

6.2.2.1 HHCF

Maashi et al. (MAASHI; ÖZCAN; KENDALL, 2014) proposed an online selection hyper-
heuristic based on the Choice Function (COWLING; KENDALL; SOUBEIGA, 2001) named
Hyper-Heuristic based on Choice Function. Their work aimed to select, one at a time, a
LLH from a set H (with size n), and apply it along with g generations. To evaluate the
performance of the LLHs, this approach uses a two-level-ranking system. First, each LLH is
evaluated according to a group of m quality indicators, here compose by Hypervolume, RNI,
UD, and AE. At this point, a table containing all the quality indicators values for each LLH
is created, a table with size 4 ∗ n. A second table (Freqrank) is generated by computing how
many times each LLH has the best value for each quality indicator.
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In order to select which LLHs to execute, HHCF uses Equation 6.1, which is composed by
an intensification term f1 and an exploration term f2 weighted by a parameter α.

F (hi) = αf1(hi) + f2(hi) (6.1)

The intensification term f1 is calculated by Equation 6.2. In this equation, n is the number
of low-level heuristics, Freqrank(hi) is the number of times that a given low-level heuristic h
is the best one according to all quality indicators, RNIrank(hi) is the rank of the low-level
heuristic according to RNI quality indicator.

f1(hi) = 2 ∗ (n+ 1)− (Freqrank(hi) +RNIrank(hi)) (6.2)

The exploration term f2 is the computational waiting time (WT ) that a given algorithm
has waited inactive. Due to the different computational effort demanded by the problems, f2

is normalized by Equation 6.3.

f2(hi) = WThi∑n
j=0 WTj

∗ 100 (6.3)

Algorithm 9 illustrates how HHCF works. First, a random population of solutions is
generated (Line 7) and used in the initialization process (Line 8). In this process, each h ∈ H
executes for g generations (Line 9), the current population Pop is updated and the value
of quality indicators for Pop are computed and stored (Line 10). Afterward, the algorithm
continues with the process until the stopping criteria are met, by ranking each h ∈ H (Line
1 2) and calculating Eq. 6.2 (Line 13) and Eq. 6.3 (Line 14). With this information, the
LLH which maximizes Eq. 6.1 is selected (Line 15) and used to generate solutions during g
generations (Line 16). Finally, the new population Pop′ is created using Pop and the offspring
population (Line 17), and all the quality indicators are recalculated for hi using Pop′ (Line
18).

Figure 32 presents an example of how HHCF works. Every time a LLH is run, the quality
indicators are calculated considering the resulting population of solutions generated by the
LLH. Hence, HHCF associates quality indicator values to LLHs. HHCF selects the next LLH
to run after performing the two-ranking system and calculating the equations for all LLHs.
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Algorithm 9: HHCF Pseudocode.
1 Input:
2 Problem;
3 g - generations before evaluate an LLH;
4 H: set of LLHs {h1, ..., hi, ..., hn};
5 α intensification parameter;
6 begin
7 Generate a random population of solutions Pop;
8 Initialize components using H;
9 All h ∈ H uses Pop to generate Pop′ during g generations;
10 Compute all quality indicators for all h ∈ H;
11 while A stopping criterion is not reached do
12 Compute Freqrank and RNIrank for all h ∈ H;
13 Equation 6.2 is computed for all h ∈ H;
14 Equation 6.3 is computed for all h ∈ H;
15 Select hi according to Eq 6.1;
16 hi executes for g generations and generates Pop′;
17 Pop← Pop′ //acceptance criterion;
18 Compute all quality indicators for hi;
19 end
20 return Pop
21 end

In this example, LLH1 is the best according to RNI indicator, LLH2 is the best according to
Hypervolume and AE, LLH4 is the best for UD, and the others do not achieve the best position
for any quality indicator. This information is considered to generate a second table. In this
table, the number of times as the first is counted and sorted. Freqrank is then obtained and
used to calculate RNI Rank + Freqrank. After generating both tables, equations 6.1, 6.3
and 6.2 can be computed and the LLH with the highest F selected. For example, LLH2 has
the highest F value with 272.26 in Figure 32.

In the first study, HHCF was tested using the WFG benchmark and the Crashworthiness
problem. The authors used the algorithms NSGAII, SPEA2 and MOGA (FONSECA; FLEM-
ING, 1998) as LLHs, and compared their results to Amalgam and to all single MOEAs. The
experimental results indicated the success of HHCF outperforming them all.

In (CARVALHO; VERGILIO; POZO, 2015), the authors evaluated HHCF replacing MOGA
by IBEA and evaluated the approach on solving another real-world problem: Class Integration
Test Order Problem. In (LI; ÖZCAN; JOHN, 2017), HHCF was also applied to another real-
world problem: the Wind Farm layout optimization (TRAN et al., 2013) also considering IBEA,
SPEA2 and NSGAII as LLHs and having competitive results. Although this hyper-heuristic
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Figure 32: HHCF Example.
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yielded good results, the use of a two-level ranking approach was not appropriately justified
and there was no theoretical background to it. However, it provided an interesting view of
considering multiple multi-objective quality indicators, and an inspiration for further work and
for this thesis.

6.2.2.2 HHLA and HHRL

Learning Automata-based Multi-Objective Hyper-Heuristic with a Ranking scheme Initial-
ization (Li; ÖZCAN; John, 2019) implements a learning automata whose action is to select a
LLH at each decision point, while the optimization problem is solved. There are two versions
available of this algorithm: HHLA and HHRL. The only difference resides in the fact that
HHRL employs an initialization process used in order to reduce the number of LLH in the
pool.

HHLA and HHRL employ machine learning techniques, in special Q-Learning in order to
identify which is the best action to take, in this case, which LLH has to be selected in a
given moment. For this purpose, the Hypervolume improvement is calculated considering the
current (j) and the previous values (i). This is performed as Equation 6.4.

vj = hypj

hypj − hypi

(6.4)

The reward is then calculated according to Equation 6.5 taking into account the improve-
ment.

r(i,j) = vj(t)− vi(t− 1) (6.5)

The Q-Table then can be updated according to Equation 6.6 which considers the reward
r(i,j), current Q-Values and a α parameter.

Q(i,j)(k + 1) = Q(i,j)(k) + α[r(i,j)(k + 1)−Q(i,j)(k)] (6.6)

Before updating the transitioning probability table P, these hyper-heuristics employ Equa-
tion 6.7, where the Q-Value is multiplied by a control parameter named m and sum with
0.1.
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λ(i,j)(t) = 0.1 +mQ(i,j)(k + 1) (6.7)

Finally, the transitioning table is updated. This is performed to all the LLHs (actions). In
case the LLH was the last chosen, then Equation 6.8 updates P. Otherwise, this is performed
by Equation 6.9.

p(i,j)(t+ 1) = p(i,j)(t) + λ(i,j)(t)β(t)(1− p(i,j)(t))− λ(i,j)(t)(1− β(t))p(i,j)(t) (6.8)

p(i,j)(t+ 1) = p(i,j)(t)− λ(i,j)(t)β(t)p(i,j)(t) + λ(i,j)(t)(1− β(t))
[ 1
r − 1 − p(i,j)(t)

]
(6.9)

Figure 33 presents an example of an application of how HHRL/HHLA learns from the
hypervolume calculating step towards the P-Table updating. First, all five LLHs are run in
sequence in order to get the first feedback on how each LLH performs. After executing all
of them, the selection procedure (explained later) is run, and GDE3 is selected. Thus all the
updating processes are run for updating the action GDE3 being selected after mIBEA.

Figure 33: HHRL and HHLA Example.

Algorithm 10 illustrates how both hyper-heuristics work. First, all the initialization process
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is performed (Line 6). The algorithm continues while a stopping criterion is not reached, this
hyper-heuristic apply the current LLH hi to the current population (Pop) during g generations
producing a new offspring (Pop′). In the following, Pop and Pop′ are combined to generate
the new current population Pop. In Line 11, this HH verifies whether it is time to switch or
not to another LL: this is performed by verifying if there is an improvement in the Hypervolume
value (compared to previous iterations). If it is the case, the current LLH keeps running, and
if not, the reinforcement learning scheme updates the transition matrix P . Finally, another
LLH is selected by the ε−RoulleteGreedy method from A, considering the transition matrix
P .

Algorithm 10: HHLA and HHRL Pseudocode, adapted from (Li; ÖZCAN; John,
2019)
1 Input:
2 Problem;
3 H: set of LLHs {h1, ..., hi, ..., hn};
4 g fixed number of generations;
5 begin
6 [A,P, Pop, hi]← Initialization(H);
7 while A stopping criterion is not reached do
8 Pop′ ← ApplyMetaHeuristic(hi,Pop,g );
9 Pop← Pop′ //acceptance criterion;

10 //decide whether to switch to another metaheuristic;
11 if switch() then
12 LearningAutomataUpdateScheme(P );
13 hi ← SelectMetaheuristic(P, A);
14 end
15 end
16 return Pop
17 end

The ε−RoulleteGreedy method, proposed in this work, focuses on exploring different tran-
sition pairs by performing a given number of trials in order to get a better view of LLH
pairwise performance at the early stage. Then it becomes more and more greedy exploiting
the accumulated knowledge.

As mentioned before, the only difference between HHLA and HHRL lies in the initialization
method. Algorithm 11 describes this process. First, the method creates a random population
of solutions (Line 5) and the transition matrix P (Line 6), which describes the selection
probabilities of transitions between LLHs. If HHLA is being run (Line 7), all LLHs are allowed
to execute. Otherwise, only allowed LLH is selected.
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For this purpose, the set of LLHs (H) is reduced in order to eliminate poor-performing
LLHs. This works as follows: First, all LLH are executed in sequence for a number of stages.
Every time a LLH executes, HHRL computes the resulting population Hypervolume, computed
using the same reference points. The scheme counts how many times a LLH becomes the
best one in all stages. These counts are then used to determine which LLH should compose
the allowed set A. LLHs with performance worse than the average is not allowed to compose
A. The algorithm continues by selecting a current LLH hi according to the ε−RoulleteGreedy
and returning all the generated information.

Algorithm 11: HHLA and HHRL Initialization Pseudocode
1 Input:
2 Problem;
3 H: set of LLHs {h1, ..., hi, ..., hn};
4 begin
5 Pop← Generate Random Population;
6 P ← Create transition Matrix;
7 if HHLA then
8 A← H;
9 end
10 else if HHRL then
11 A← SelectAllowedLLH(H);
12 end
13 hi ← Select first LLH to run;
14 return A,P, Pop, hi

15 end

As mentioned, HHLA and HHRL can be classified as a Reinforcement Learning based online
selection hyper-heuristic. For performance evaluation, the authors employed IBEA, SPEA2,
and NSGAII as LLHs to find solutions for the WFG and DTLZ benchmarks and variants of the
Crashworthiness problem. The results showed that this approach outperformed HHCF, making
it one of the state-of-art online selection hyper-heuristic for multi-objective optimization.

Since this thesis is proposing a hyper-heuristic to deal with multi-objective optimization,
HHCF, HHLA and especially HHRL will be considered in the empirical performance evaluation
of the work proposed in this thesis.
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6.3 Collaborative meta-heuristics designed as MAS

Some methods are not considered hyper-heuristics but proposed an interesting way
to design collaborative meta-heuristics using multi-agent systems concepts. Talukdar et
al. (TALUKDAR et al., 1998) propose A-Teams, a synergistic team of problem-solving meth-
ods which cooperates by sharing a population of candidate solutions. In this approach, there is
no coordination or planning mechanism, and solutions are shared, through the central memory
mechanism, allowing other agents to use these solutions in order to guide the search through
promising search space, thus reducing the chances of being stuck at a local optimum.

Rabak and Sichman (RABAK; SICHMAN, 2003) extended A-Teams to design OPTIMA,
an approach designed to solve the automatic electronic component insertion process on a
particular inserting machine, named the Panasert AVK machine. Aydin and Fogarty (AYDIN;
FOGARTY, 2004) extended the A-Teams approach for solving Job Shop Scheduling. They
employed as problem-solving agents: SA (Simulated Annealing), TS (Taboo Search), HC
(Hill Climbing), CSA (Simulated Annealing), CTS (Taboo Search), CHC (Hill Climbing),
CHC2 (Hill Climbing), GA (Genetic Algorithm), NT (Improved version of CTS), and Damage.
Barbucha (BARBUCHA, 2014) also extended the A-Team approach in order to create an
Agent-Based Cooperative Population Learning Algorithm for the Vehicle Routing Problem
with Time Windows. In his approach, the search is treated into stages, and different search
procedures are used at each stage. The first stage is organized as an A-Team, where agents
are used for improving the individuals stored in the collective memory. In the second stage, the
individuals in the population (collective memory) are divided into subpopulations and allocated
to a different set of A-Teams. At this level, each A-Team uses the same heuristics working
under the same cooperation scheme. In the third stage, the sub-populations and the team of
A-Teams architecture are also being employed. However, the process of communication among
the set of A-Teams is used. The author evaluated his approach setting five problem-specific
heuristics in the first stage and a set of four Tabu Search and simulated annealing in the higher
level.

Milano and Roli (MILANO; ROLI, 2004) presented the Multi-agent Meta-heuristic Archi-
tecture (MAGMA), a four-level architecture, with one or more agents at each level, where
each level one or more agents act. The first level contains solution builders agents, responsible
for providing feasible solutions for upper levels. The second level contains solution improvers,
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responsible for providing local search and solution improvements until a termination condition
is verified. The third-level agents have a global view of the search space, or, at least, their task
is to guide the search towards promising regions, trying to avoid local optima. In the last level
(Level-3), higher-level strategies are described, such as a cooperative search and any other
combination of meta-heuristics. The authors showed that the three first levels are enough to
describe standalone meta-heuristics and then evolutionary algorithms. Besides that, Level-3
can model coordinated and cooperative hybrid meta-heuristics.

Talbi and Bachelet (TALBI; BACHELET, 2006) propose a hybrid approach to solve the
quadratic assignment problem by applying Tabu Search, Genetic Algorithm e KO (kick op-
erator) as cooperative agents. The three heuristic agents run simultaneously and exchange
information via an adaptive memory (AM). Each algorithm has a role: Tabu Search is used
as the primary search algorithm, Genetic Algorithm is in charge of the diversification and Kick
Operator is applied to intensify the search.

6.4 Discussion

Table 9 presents all cited work, by classifying them according to the following criteria:

• MAS: which approaches are designed as a multi-agent system;

• HH: which are considered a hyper-heuristic;

• Group 1: which papers treat heuristics as low-level-heuristics;

• Group 2: which treat meta-heuristics as low-level-heuristics;

• MOP: to identify which approach deals with multi-objective optimization;

• Cooperative (Coop.) or Competitive (Comp.): if LLHs try to cooperate with each other
or compete for resources.

We can draw the following conclusions by analyzing Table 9:

• Most of the work here listed are considered hyper-heuristic;

• Most of the hyper-heuristic are not agent-based;
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Table 9: Papers classification

Paper MAS HH Group 1 Group 2 MOP Coop. Comp.

(TALUKDAR et al., 1998) X X X X

(RABAK; SICHMAN, 2003) X X X X

(AYDIN; FOGARTY, 2004) X X X X

(BARBUCHA, 2014) X X X X

(MILANO; ROLI, 2004) X X X X

(TALBI; BACHELET, 2006) X X X X

(CADENAS; GARRIDO; MUNOZ, 2007) X X X X

(MALEK, 2010) X X X X

(OUELHADJ; PETROVIC, 2010) X X X X X

(MEIGNAN; KOUKAM; CRÉPUT, 2010) X X X X

(MARTIN et al., 2016) X X X X X

(ACAN; LOTFI, 2016) X X X X X

(NUGRAHENI; ABEDNEGO, 2016) X X X X

(MCCLYMONT et al., 2013) X X X X

(KHEIRI; KEEDWELL, 2017) X X X X

(GUIZZO et al., 2015) X X X X

(GUIZZO; VERGILIO; POZO, 2015) X X X X

(CASTRO; POZO, 2015) X X X X

(CARVALHO, 2015) X X X X

(GONÇALVES et al., 2015) X X X X

(GONÇALVES; ALMEIDA; POZO, 2015) X X X X

(LI, K. et al, 2014) X X X X

(ALMEIDA et al., 2020) X X X X

(SABAR et al., 2015) X X X

(VÁZQUEZ-RODRÍGUEZ; PETROVIC, 2012) X X X X X

(VRUGT; ROBINSON, 2007) X X X X X

(MAASHI; ÖZCAN; KENDALL, 2014) X X X X

(CARVALHO; VERGILIO; POZO, 2015) X X X X

(Li; ÖZCAN; John, 2019) X X X X

THIS THESIS X X X X X X
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• Most of the work belong to group 1 (use heuristics as LLH);

• Half studies deal with MOP;

• Most of the studies adopt either competitive or cooperative strategies. The minority of
them consider both strategies at the same time.

The work presented in this thesis is the only one that concurrently (i) is classified as a HH,
(ii) treats meta-heuristics as low-level-heuristics, (iii) finds solutions to MOPs, (iv) considers
both competitive and cooperative strategies and (v) is designed as a MAS.

By analyzing Table 9 one can see three work very related work: (ACAN; LOTFI, 2016),
(MAASHI; ÖZCAN; KENDALL, 2014) (HHCF) and (Li; ÖZCAN; John, 2019) (HHRL and
HHLA). All of them consider MOEAs to be online selected while a multi-objective problem
is solved. The two last, as performed in this thesis, do not use multiple populations and
focus on how well the hyper-heuristic perform. In the first one, the authors employed multiple
populations, and by doing that, giving a way more chances for solutions to survive. Moreover,
HHCF was successfully applied in several domains. HHRL and HHLA overcome HHCF results,
which makes this approach very interesting for comparisons.

6.5 Conclusion

This chapter presented a succinct literature review on hyper-heuristics for selecting
heuristics/meta-heuristics. This review considered both agent-based and non-agent-based
approaches. State-of-art hyper-heuristics for selecting MOEAs for solving MOPs, such as
HHCF and HHLA/HHRL, were introduced. These HH are employed in empirical experiments
presented in the next chapter.
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PART III

EMPIRICAL EVALUATION
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7 EXPERIMENTS

This chapter presents three experimental studies. In the first one (Section 7.2), MOABHH
is instantiated using three different voting methods described in Chapter 4 in order to solve
the benchmark WFG for two and three objectives. The second one (Section 7.3) also instan-
tiates MOABHH using the three voting methods in order to find solutions for some real-world
problems. In both Experiment I and Experiment II, the MOABHH performance was compared
against the meta-heuristics outcome, which means, full instances of the meta-heuristics which
are also employed as LLH. Finally, In Section 7.4 the biggest comparison is performed by con-
sidering 18 real-world problems, the three MOABHH instances (for each voting method) and
three other state-of-art hyper-heuristic.

The results of the first, the second and the third experiments were originally published re-
spectively in (CARVALHO; SICHMAN, 2017), (CARVALHO; SICHMAN, 2018b; CARVALHO
et al., 2020) and (CARVALHO; ÖZCAN; SICHMAN, 2021).

7.1 Experimental Setup

All experiments were set according to literature recommendation. Table 10 presents param-
eters used for evolutionary operators. Parameters values from (DEB; JAIN, 2014; MAASHI;
ÖZCAN; KENDALL, 2014; Li; ÖZCAN; John, 2019) were considered for SBX Crossover and
Polynomial Mutation (for continuous optimization). For this mutation, the dv in the func-
tion 1/dv means the number of decision variables in the problem. For discrete optimization,
PMX Crossover and Permutation Swap Mutation, parameters from (PSYCHAS; DELIMPASI;
MARINAKIS, 2015) were considered. For Differential Evolution we considered parameters
from (KUKKONEN; LAMPINEN, 2005).

Table 11 present algorithm parameters for all the three performed studies. Each algo-
rithm (hyper-heuristic and MOEA) had 30 independent runs for each problem instance. We
followed (BRADSTREET et al., 2007) for Experiment 1 regarding the number of generations
and population size. We followed (MAASHI; ÖZCAN; KENDALL, 2014) for Experiment II
and IIIA. In Experiment IIIB, we considered a smaller population of solutions and fewer gen-
erations to run for problems with very long execution (up to two days of execution for each
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Table 10: Heuristics Parameters

Heuristic distribution rate
SBX Crossover 20 0.9
Polynomial Mutation 20 1/dv
PMX Crossover - 0.9
Permutation Swap Mutation - 0.2

F Cr K Type
Differential Evolution 0.2 0.2 0.5 rand/1/bin

run). In Experiment IIIA, HHCF parameters followed (MAASHI; ÖZCAN; KENDALL, 2014)
while HHRL/HHLA considered (Li; ÖZCAN; John, 2019). For Experiment IIIB, these pa-
rameters were scalarized due to the different populations and generations demanded by the
studied problems. Different parameters to MOABHH were set in different experiments based
on tuning.

Table 11: Hyper-heuristics and MOEAs Parameters

Experiment I Experiment II Experiment IIIA Experiment IIIB
Number of indepen-
dent runs

30 30 30 30

Number of genera-
tions

750 1000 1000 50

Population Size 100 100 100 30
MOABHH δ 50 50 50 1
MOABHH ε 50 50 50 1
MOABHH β 0.3 0.3 1 0.5
HHCF generations
per round

- - 25 1

HHCF α - - 30 30
HHRL/HHLA Deci-
sion Points

- - 25 25

HHRL/HHLA m - - 2 2
HHRL/HHLA α - - 0.1 0.1
HHRL/HHLA β - - 3 3

The Hypervolume average was computed after every execution. For benchmark functions,
true Pareto fronts (PFt) provided by (HUBAND et al., 2006) were considered. For all the other
problems, since they are real-world problems, there is no previous known optimal solution set.
Thus, Pareto Known Fronts (PFk) were created, for each problem instanced, by combining all
the results got by all algorithms along with the 30 runs. Reference points for the Hypervolume
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indicator were taken for the available Pareto Front.

After obtaining all the averages, we compared the results using Kruskal-Wallis Statistical
Test with a confidence level of 95%. So, in all hypervolume result tables, red values mean lower
Hypervolume values with a statistical difference, black values mean averages statistically tied
and bold values highlight those with the higher Hypervolume values, although not necessarily
with a statistical difference.

For each experiment, in order to perform a cross-domain evaluation of algorithms, we
followed (DERRAC et al., 2011) and generated the average Friedman ranking considering
Hypervolume averages. This ranking considers which position each algorithm takes on each
problem, and assign an average ranking for each algorithm.

In this thesis, a MOABHH instance occurs when this model is instantiated considering a
voting method. For example, using voting methods detailed in Chapter 4. Thus,MOABHHC

refers to MOABHH instantiated considering Copeland Voting,MOABHHB instantiated con-
sidering Borda and MOABHHK with Kemeny-Young.

Regarding the implementation, all MOEAs used are implemented by jMetal 5.7 (NEBRO;
DURILLO; VERGNE, 2015). HHCF, MOABHH and HHLA/HHRL were implemented in Java
JDK10.

7.2 Experiment I: Benchmark

7.2.1 Description

In this first experiment, the Walking Fish Group (Section 2.5.1) benchmark was employed
in order to evaluate the performance of the proposed hyper-heuristic. This is a similar exper-
iment like the one performed in (CARVALHO; SICHMAN, 2017). The difference lies in the
fact that MOABHH is instanced here with three different voting methods: Borda, Copeland
and Kemeny-Young, while in (CARVALHO; SICHMAN, 2017) only Copeland was used. These
instances will be named along with this chapter as MOABHHB for Borda, MOABHHC for
Copeland and MOABHHK for Kemeny.

This experiment setup followed (BRADSTREET et al., 2007; CARVALHO; SICHMAN,
2017) by setting no ∈ {2, 3} as the number of objectives, l = 20 as the number of distance
variables, and k = 2 ∗ (no− 1) as the number of positions (as stated in Section 2.5.1). Thus
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this experiment considers 18 benchmark problems to be optimized.

In this experiment, the MOEAs: NSGA-II, SPEA2 and IBEA were employed both as
single instance algorithms and as LLHs for MOABHH. So, MOABHH has three candidates
(LLH Agents) in the election. All MOABHH instances (MOABHHB, MOABHHC and
MOABHHK) employed Hypervolume, HR, RNI, AE, UD and ER as quality indicators voters.

7.2.2 Results

Table 14 presents results for this experiment. IBEA is clearly the best algorithm here,
followed by the three hyper-heuristics. For 2-objective problems, all three MOABHH instances
found competitive results, especially MOABHHB, by getting the higher hypervolume av-
erage on WFG2 and MOABHHC in WFG5. There is no statistical difference among the
hypervolume averages for MOABHHB, MOABHHC , and MOABHHK .

For 3-objective problems, all MOABHH did not find competitive results in WFG8.
MOABHHC also was overcome in WFG4, WFG5 and WFG7-WFG9, and MOABHHK

in WFG4, WFG7-WFG9. SPEA2 just find tied averages on WFG5, and NSGA-II found tied
results in WFG2 and WFG5.

Table 12 summarizes the performance of the algorithms considering how many times
they got the best averages, tied results and got worse results compared to the best one.
IBEA performs well in all the problems. The three MOABHH hyper-heuristics, especially
MOABHHB, reached good results in most of the problems.

Table 12: Experiment I Summary

IBEA NSGAII SPEA2 MOABHHB MOABHHC MOABHHK

Best Average 13 2 0 1 1 1
Tied Average 5 3 3 16 12 13
Worse Average 0 13 15 1 5 4
Total Competitive
(Best + Tied)

18 5 3 17 13 14

Using one algorithm much better than others (IBEA) is an interesting experiment because
HH must find the best one as soon as possible. Using NSGA-II and SPEA2 more than
necessary deteriorate performance in this experiment. MOABHHB was the best HH in this
case because it chose more IBEA than the others.
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Table 13 presents the cross-domain statistical evaluation performed by Friedman average
ranking. In this table, smaller statistical values are considered as better. Here, IBEA has the
best ranking, followed by MOABHHB, Kemeny and MOABHHC . NSGAII and SPEA2 are
the two worst algorithms according to this ranking.

Table 13: Average Rankings of the algorithms (Friedman) for Experiment I

Algorithm Ranking
IBEA 1.7777777777777781
NSGAII 4.3888888888888875
SPEA2 5.61111111111111

MOABHHB 2.666666666666667
MOABHHC 3.3333333333333335
MOABHHK 3.222222222222222
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Table 14: Hypervolume Averages for WFG Experiment I

Obj. Problem IBEA NSGAII SPEA2 MOABHHB MOABHHC MOABHHK

WFG1 7.4273E-01 6.8839E-01 6.7419E-01 7.2754E-01 7.2524E-01 7.3761E-01
WFG2 7.2123E-01 7.3058E-01 7.2775E-01 7.3351E-01 7.2806E-01 7.2815E-01
WFG3 7.2950E-01 7.2695E-01 7.2315E-01 7.2931E-01 7.2949E-01 7.2934E-01
WFG4 5.7828E-01 5.7547E-01 5.7240E-01 5.7819E-01 5.7815E-01 5.7818E-01
WFG5 5.4856E-01 5.4540E-01 5.4078E-01 5.4798E-01 5.4957E-01 5.4832E-01
WFG6 5.5696E-01 5.5653E-01 5.5114E-01 5.5711E-01 5.5655E-01 5.5697E-01
WFG7 5.7858E-01 5.7701E-01 5.7301E-01 5.7855E-01 5.7855E-01 5.7855E-01
WFG8 5.3721E-01 5.3552E-01 5.3131E-01 5.3639E-01 5.3654E-01 5.3640E-01

2

WFG9 5.4127E-01 5.4849E-01 5.4162E-01 5.4410E-01 5.3559E-01 5.3442E-01
WFG1 7.7216E-01 5.2515E-01 4.5775E-01 7.4722E-01 7.5231E-01 7.4043E-01
WFG2 8.8869E-01 8.9224E-01 8.8447E-01 8.8228E-01 8.7876E-01 8.7586E-01
WFG3 7.1962E-01 7.1062E-01 6.6755E-01 7.1960E-01 7.1964E-01 7.2036E-01
WFG4 7.3278E-01 6.7707E-01 6.3579E-01 7.3044E-01 7.1852E-01 7.1473E-01
WFG5 7.0117E-01 6.6143E-01 6.2448E-01 6.9777E-01 6.7579E-01 6.8487E-01
WFG6 7.0754E-01 6.6282E-01 6.2105E-01 7.0462E-01 6.9569E-01 7.0517E-01
WFG7 7.3537E-01 6.9242E-01 6.3869E-01 7.3290E-01 7.1595E-01 7.2235E-01
WFG8 6.7701E-01 6.2164E-01 5.6177E-01 6.7505E-01 6.7017E-01 6.6649E-01

3

WFG9 6.8146E-01 6.3760E-01 6.2128E-01 6.6282E-01 6.4573E-01 6.4880E-01
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7.3 Experiment II: Discrete and continuous evaluation

7.3.1 Description

The second experiment aims to evaluate the MOABHH (MOABHHB, MOABHHC

and MOABHHK) on solving real-world problems. This experiment was partially published
in (CARVALHO; SICHMAN, 2018b; CARVALHO et al., 2020) and it is here presented with
more complete results. For this purpose, four continuous optimization problems were consid-
ered: Car Side Impact, Crashworthiness, Water and Machining (Section 2.5.2). This experi-
ment also considers the discrete optimization problem moTSP using 100, 300 and 500 cities
evaluating instances with 2, 3, 4, 5 objectives.

7.3.2 Results

For evaluation purposes, we compared MOABHH’s result with each individual MOEA

agent. Table 15 shows hypervolume averages in continuous engineering real-world problems.
In this table, as well as in Table 16, black values mean statistically tied higher hypervolume
averages, not having a statistical difference from the highest one, represented by a bold

value. Red values are statistically overcome. MOABHHB found the best hypervolume
average in CrashWorthiness (overcoming all MOEAs, but tied with our other HHs) and Water
(overcoming other HHs). For Machining, MOABHHK got the best average tied with the
best MOEA (IBEA) and the other HHs. However, in the Car Side Impact problem, it was
overcome by IBEA (the best average), MOABHHC and MOABHHK .

Table 15: Hypervolume results for continuous engineering real-world problems

Problem GDE3 IBEA NSGAII SPEA2 MOABHHB MOABHHC MOABHHK

Water 5.6966E-01 5.0861E-01 5.2592E-01 5.0309E-01 5.8639E-01 5.5992E-01 5.6089E-01
Machining 1.8626E-01 2.8005E-01 1.8670E-01 1.7927E-01 2.7674E-01 2.7444E-01 2.8194E-01
Car Side Impact 4.3793E-01 4.7013E-01 4.2184E-01 4.3920E-01 4.5609E-01 4.6116E-01 4.6511E-01
Crash worthiness 7.3630E-01 7.0617E-01 7.2944E-01 7.2236E-01 7.3937E-01 7.3859E-01 7.3814E-01

For moTSP, problems instances were instantiated with 100, 300 and 500 cities from DI-
MACS 1, a TSP benchmark composed by a set of 1-objective problems that can be combined
to generate moTSP problems. Thus, for each problem, we combined the five 1-objective prob-
lems (A, B, C, D, and E), following Paquete et al. (PAQUETE; CHIARANDINI; STÜTZLE,

1https://eden.dei.uc.pt/ paquete/tsp/
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2004). For example, a problem named A-C-D is a tri-objective optimization problem gener-
ated using the 1-objective problems A, C and D. In total, we employed 72 different discrete
optimization problems.

Tables 16, 17 and 18 shows respectively hypervolume averages for 100, 300 and 500
cites problems. For 100 cities, no statistical difference was found between MOABHH instances
and IBEA, the best algorithm found. NSGA-II and SPEA2 were outperformed in all problems
with more than three objectives, sometimes finding just dominated solutions (when compared
to other MOEA solutions), and so having zero as hypervolume averages. SPEA2 is the worse
algorithm here, by just finding tied results in three problems (A-D, B-D, and D-E). NSGA-II
just found tied results in 2-objectives problems.

In 300 cities experiments,MOABHHB andMOABHHC found tied results with IBEA in
all problems. MOABHHK was outperformed in two problems (A-C and A-B-C-D-E). NSGA-
II and SPEA2 were outperformed in all problems, sometimes with zero-valued hypervolumes
averages.

In 500 cities experiments, MOABHHB was outperformed just in one problem (B-D).
MOABHHC did not find tied results in 4 problems (A-B, B-E, A-B-C-D, and A-B-C-D-E) and
MOABHHK in two problems (B-D and A-B-C-D). NSGA-II and SPEA2 were outperformed
in all problems, sometimes with zero-valued hypervolumes averages.
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Table 16: moTSP Hypervolume results for 100 cities problems

Obj. Problem IBEA SPEA2 NSGA-II MOABHHB MOABHHC MOABHHK

A-B 5.4035E-01 4.7779E-01 4.9911E-01 5.0164E-01 5.0819E-01 5.1816E-01
A-C 5.9319E-01 5.8360E-01 5.9474E-01 6.1971E-01 6.2208E-01 6.2527E-01
A-D 4.5715E-01 3.9650E-01 4.6830E-01 4.4563E-01 4.4353E-01 4.2217E-01
A-E 5.3212E-01 4.5169E-01 4.7707E-01 5.2613E-01 4.7766E-01 4.9609E-01
B-C 4.6332E-01 4.3609E-01 4.8509E-01 4.9080E-01 4.6960E-01 4.7095E-01
B-D 5.4431E-01 4.9306E-01 5.3926E-01 5.4578E-01 5.3647E-01 5.5180E-01
B-E 5.1461E-01 4.6549E-01 5.0102E-01 5.0425E-01 5.1585E-01 5.1999E-01

2

D-E 5.1809E-01 4.9690E-01 4.9600E-01 4.9925E-01 5.0892E-01 5.1148E-01
A-B-C 4.8495E-01 4.1456E-01 2.1440E-01 4.8220E-01 4.7829E-01 4.7885E-01
A-B-D 5.1534E-01 4.4888E-01 2.6171E-01 5.2126E-01 5.0962E-01 5.0569E-01
A-B-E 4.6178E-01 3.5999E-01 1.8964E-01 4.5840E-01 4.5377E-01 4.5109E-01
A-C-D 5.6023E-01 4.9321E-01 3.1264E-01 5.6637E-01 5.5246E-01 5.4835E-01
A-C-E 5.1899E-01 4.4108E-01 2.6199E-01 5.2616E-01 5.1975E-01 5.3756E-01
A-D-E 5.0983E-01 3.9365E-01 2.0880E-01 4.8518E-01 5.0332E-01 4.8770E-01
B-C-D 4.7709E-01 3.7966E-01 2.5222E-01 4.4362E-01 4.5226E-01 4.6201E-01
B-C-E 4.9138E-01 4.0281E-01 2.0546E-01 4.8864E-01 4.9444E-01 4.8290E-01
B-D-E 3.8455E-01 2.8662E-01 1.2573E-01 3.8934E-01 3.9322E-01 3.7559E-01

3

C-D-E 4.9682E-01 4.1544E-01 2.5733E-01 4.9340E-01 4.8724E-01 5.0100E-01
A-B-C-D 2.5594E-01 6.7345E-02 0.0000E+00 2.6236E-01 2.4459E-01 2.6282E-01
A-B-C-E 4.2801E-01 2.3812E-01 1.8766E-03 4.1034E-01 4.0248E-01 4.0576E-01
A-B-D-E 2.6658E-01 7.3478E-02 0.0000E+00 2.4563E-01 2.6982E-01 2.6752E-01
A-C-D-E 4.2391E-01 2.5905E-01 3.2653E-03 3.9823E-01 3.9784E-01 4.1429E-01

4

B-C-D-E 2.5577E-01 5.5816E-02 0.0000E+00 2.4217E-01 2.6454E-01 2.4721E-01
5 A-B-C-D-E 1.8162E-01 7.6230E-04 0.0000E+00 1.7742E-01 1.7585E-01 1.7188E-01
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Table 17: moTSP Hypervolume results for 300 cities problems

Obj. Problem IBEA SPEA2 NSGA-II MOABHHB MOABHHC MOABHHK

A-B 3.4477E-01 1.0628E-01 1.9837E-01 3.4556E-01 2.5192E-01 2.9158E-01
A-C 1.9181E-01 6.9629E-03 3.9852E-02 9.7699E-02 1.2922E-01 1.0086E-01
A-D 2.1098E-01 1.4334E-02 7.9636E-02 2.0182E-01 1.3524E-01 1.4742E-01
A-E 2.9146E-01 5.7068E-02 1.4574E-01 2.4915E-01 2.4967E-01 2.4736E-01
B-C 2.8195E-01 3.9052E-02 8.1285E-02 1.6298E-01 2.1979E-01 1.7911E-01
B-D 8.9690E-02 3.1471E-03 1.1332E-02 6.1996E-02 4.4891E-02 5.2866E-02
B-E 2.7389E-01 3.9910E-02 9.5145E-02 2.0957E-01 1.7410E-01 2.0914E-01

2

D-E 1.7335E-01 3.2888E-03 2.1784E-02 8.9845E-02 1.1050E-01 9.7053E-02
A-B-C 2.4760E-01 1.0342E-02 0.0000E+00 2.1426E-01 2.3443E-01 2.3034E-01
A-B-D 2.0451E-01 5.9115E-03 0.0000E+00 1.8212E-01 1.9698E-01 1.7616E-01
A-B-E 2.7147E-01 1.9147E-02 0.0000E+00 2.6446E-01 2.5941E-01 2.5173E-01
A-C-D 2.6918E-01 2.2637E-02 3.6814E-05 2.5458E-01 2.3914E-01 2.5375E-01
A-C-E 2.5521E-01 3.8172E-03 0.0000E+00 2.2481E-01 2.1414E-01 2.2447E-01
A-D-E 2.3968E-01 1.7239E-02 3.9118E-06 2.1167E-01 2.0448E-01 1.9552E-01
B-C-D 2.7007E-01 1.8408E-02 0.0000E+00 2.3418E-01 2.5367E-01 2.6510E-01
B-C-E 3.3973E-01 4.5529E-02 5.8039E-05 2.9439E-01 2.7783E-01 2.9915E-01
B-D-E 1.9336E-01 1.9119E-03 0.0000E+00 1.5801E-01 1.7727E-01 1.9765E-01

3

C-D-E 2.2654E-01 6.1922E-03 0.0000E+00 2.0187E-01 2.2495E-01 2.1348E-01
A-B-C-D 1.5264E-01 1.7043E-08 0.0000E+00 1.2746E-01 1.2331E-01 1.2074E-01
A-B-C-E 1.4398E-01 1.0926E-05 0.0000E+00 1.2276E-01 1.1770E-01 1.1338E-01
A-B-D-E 1.6575E-01 1.9504E-04 0.0000E+00 1.2810E-01 1.3119E-01 1.3793E-01
A-C-D-E 1.8510E-01 7.0819E-06 0.0000E+00 1.8532E-01 1.6692E-01 1.4873E-01

4

B-C-D-E 1.4505E-01 0.0000E+00 0.0000E+00 1.2333E-01 1.0074E-01 1.0481E-01
5 A-B-C-D-E 1.0370E-01 0.0000E+00 0.0000E+00 7.0018E-02 7.5318E-02 6.5663E-02
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Table 18: moTSP Hypervolume results for 500 cities problems

Obj. Problem IBEA SPEA2 NSGA-II MOABHHB MOABHHC MOABHHK

A-B 3.0971E-01 2.7333E-02 1.2989E-01 2.2817E-01 2.2056E-01 2.5826E-01
A-C 3.9296E-01 4.3744E-02 1.3494E-01 2.8918E-01 2.7929E-01 2.9652E-01
A-D 3.2423E-01 3.2357E-02 1.0020E-01 2.4799E-01 2.5170E-01 2.5032E-01
A-E 2.9747E-01 2.6163E-02 1.1451E-01 2.0568E-01 2.3650E-01 2.1522E-01
B-C 2.6316E-01 3.8700E-03 4.2782E-02 1.6620E-01 1.8824E-01 1.8270E-01
B-D 1.6155E-01 5.6406E-03 2.9149E-02 8.5206E-02 9.2730E-02 7.5866E-02
B-E 2.1235E-01 3.8428E-04 2.6925E-02 1.2112E-01 1.0454E-01 1.4513E-01

2

D-E 2.3617E-01 1.1130E-02 4.9594E-02 1.8893E-01 1.5481E-01 1.8005E-01
A-B-C 2.2600E-01 3.0933E-03 0.0000E+00 1.8006E-01 1.7866E-01 1.9422E-01
A-B-D 2.0955E-01 2.9666E-03 0.0000E+00 2.0363E-01 2.0868E-01 2.0177E-01
A-B-E 3.1399E-01 4.4502E-03 0.0000E+00 2.3487E-01 2.5954E-01 2.5441E-01
A-C-D 2.4820E-01 9.0777E-03 0.0000E+00 2.1905E-01 2.1984E-01 1.9709E-01
A-C-E 2.1200E-01 2.6963E-03 0.0000E+00 1.5247E-01 1.4886E-01 1.4463E-01
A-D-E 2.3527E-01 8.6451E-03 0.0000E+00 1.9279E-01 1.9355E-01 1.9894E-01
B-C-D 2.3875E-01 3.8390E-03 0.0000E+00 1.8534E-01 1.7833E-01 1.8980E-01
B-C-E 1.8803E-01 1.3207E-03 0.0000E+00 1.4518E-01 1.7380E-01 1.4003E-01
B-D-E 2.2777E-01 3.9015E-03 0.0000E+00 2.1482E-01 2.0192E-01 2.0024E-01

3

C-D-E 1.8113E-01 2.4474E-03 0.0000E+00 1.4559E-01 1.6310E-01 1.5891E-01
A-B-C-D 1.2815E-01 0.0000E+00 0.0000E+00 8.6029E-02 7.0892E-02 8.0518E-02
A-B-C-E 1.5159E-01 0.0000E+00 0.0000E+00 1.0910E-01 1.1653E-01 1.0825E-01
A-B-D-E 1.5355E-01 0.0000E+00 0.0000E+00 1.0443E-01 1.1226E-01 1.1089E-01
A-C-D-E 1.4316E-01 0.0000E+00 0.0000E+00 1.0845E-01 1.0782E-01 1.1196E-01

4

B-C-D-E 1.7655E-01 0.0000E+00 0.0000E+00 1.2994E-01 1.4604E-01 1.2650E-01
5 A-B-C-D-E 1.0434E-01 0.0000E+00 0.0000E+00 6.6333E-02 6.1503E-02 6.7028E-02
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Table 19 summarizes the performance of the algorithms considering how many times
they got the best averages, tied results and got worse results compared to the best one.
Considering the continuous evaluation, no algorithm performed well in all of the problems.
The three MOABHH hyper-heuristics were the best-studied algorithms with three good results,
followed by IBEA. NSGAII and SPEA2 did not get good results. Considering moTSP, IBEA
and MOABHHB performed well in almost all the problems. IBEA had been overcome in
A-C bi-objective 100 cities problems while MOABHHB was overcome in B-D bi-objective
500 cities. In fact, MOABHHB is the best algorithm here (having good results in 74 of 76
problems), followed by IBEA (having good results in 73 of 76 problems). MOABHHC and
MOABHHK tied, having good results in 71 of 76 problems.

Table 19: Experiment II Summary

IBEA NSGAII SPEA2 GDE3 MOABHHB MOABHHC MOABHHK

Continuous
Best average 1 0 0 0 2 0 0
Tied average 1 0 0 1 1 3 3
Worse average 2 4 4 3 1 1 1

moTSP 100
Best average 9 1 0 - 5 4 5
Tied average 14 7 3 - 19 20 19
Worse average 1 16 21 - 0 0 0

moTSP 300
Best average 22 0 0 - 1 0 1
Tied average 2 0 0 - 23 24 21
Worse average 0 24 24 - 0 0 2

moTSP 500
Best average 22 0 0 - 0 0 0
Tied average 2 0 0 - 23 20 22
Worse average 0 24 24 - 1 4 2

Total Competitive (Best + Tied) 73/76 8/76 9/76 1/4 74/76 71/76 71/76

Table 20 presents the statistical evaluation, similar to the one presented in Experiment I.
For this purpose Tables 15, 16, 17 and 18 were considered. In order to summarize all results
from experiment II, GDE3 was not considered in this ranking because it was not applied in
moTSP experiments. Removing GDE3 from this analysis is not critical due to the fact of his
bad performance in the four studied continuous problems.

In this ranking, IBEA also had the best ranking, followed by MOABHHB, MOABHHK

and MOABHHC . NSGAII and SPEA2 are also the two worst algorithms according to this
ranking. Interestingly, this strong and robust behavior of the Borda rule has been observed
in other domains, such as when aggregating ranking information from crowd workers (MAO;
PROCACCIA; CHEN, 2013).
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Table 20: Average Rankings of the algorithms (Friedman) for Experiment II

Algorithm Ranking
IBEA 1.5263157894736823
SPEA2 5.381578947368425
NSGAII 5.460526315789473

MOABHHB 2.815789473684209
MOABHHC 2.947368421052631
MOABHHK 2.868421052631578

7.4 Experiment III: Real-world continuous problems

7.4.1 Description

In the third experiment, published in (CARVALHO; ÖZCAN; SICHMAN, 2021), the hyper-
heuristics HHCF (Section 6.2.2.1), HHRL and HHLA (Section 6.2.2.2), and three MOABHH
(Chapter 5) voting methods were eveluated. They controlled five LLH: GDE3, IBEA, NSGAII,
SPEA2, and mIBEA (here added because its performance in (Li et al., 2017)). These MOEAs
are used to solve the eighteen continuous real-world optimization problems presented in Ta-
ble 21. These problems were selected due to the fact that there is no clear winner among
the meta-heuristics. In this scenario, hyper-heuristics are necessary in order to find a good
trade-off.

Different configurations were employed for these problems. Table 22 presents how many
generations and population size was used for each problem. We set P17-P18 differently due
to the high computational effort demanded in these applications, which takes almost three
months for experiments using the same setup considered for the problems P01-P16.

7.4.2 Results

Table 23 presents Hypervolume averages: bold values are the best Hypervolume values
among all nine algorithms, and black values are tied statistically with the best value.

From the experiments, we could conclude the following:

• if we compare the results obtained just by the five MOEAs, we could see that: (i) GDE3
obtained the highest results on five problems (P01, P04, P14, P16, and P17); (ii) IBEA
was the best one on four problems (P02, P05, P07 and P13); (iii) NSGAII has the best
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Table 21: A brief description real-world multi-objective problems containing the number of
objectives, variables constraints and source

ID Problem name Objs. Variables. Constraints

P01 Water 5 3 7
P02 Machining 4 3 3
P03 CarSideImpact 3 7 0
P04 CrashWorthiness 3 5 0
P05 FourBarTruss 2 4 0
P06 Golinski 2 7 11
P07 Quagliarella 2 16 0
P08 Poloni 2 2 0
P09 Vibrating Platform Design 2 5 0
P10 Optical Filter 2 11 0
P11 Welded Beam Design 2 4 0
P12 Disk Brake Design 2 4 0
P13 Heat Exchanger 2 16 0
P14 Hydro Dynamics 2 6 0
P15 Area Under Curve 2 10 0
P16 Kernel Ridge Regression 2 5 0
P17 Facility Placement 2 20 0
P18 Neural Network Controller 2 24 0

Table 22: Parameters used in experiments

Experiment Problems Generations Population Size

IIIA P01-P16 1000 100
IIIB P17-P18 50 30
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average on four problems (P06, P10, P15, and P18); (iv) SPEA2 have the best average
on five problems (P03, P08, P09, P11, and P12); and (v) mIBEA was one of the best
in P05.

• if we consider just the three MOABHH instances we have: (i) MOABHHB has higher
averages on 5 problems (P01, P07, P10, P13, P18); (ii) MOABHHC has higher aver-
ages on 9 problems (P02, P03, P04, P06, P09, P11, P12, P14 P17); (iii) MOABHHK

has higher averages on 4 problems (P05, P08, P15, P16);

• if we consider all the six hyper-heuristics, we have: (i)MOABHHB has higher averages
on four problems (P01, P07, P10, P13); (ii) MOABHHC has higher averages on
four problems (P04, P06, P12, P17); (iii) MOABHHK has higher averages on three
problems (P08, P15, P16); (iv) HHLA has its best results on two problems (P05, P18);
(v) HHRL performs better than others in 4 problems (P02, P09, P11, P14); (vi) HHCF
is the best algorithm just in P03.

• finally, if we compare the results obtained by all 11 algorithms, GDE3 have higher
Hypervolume values on five problems (P01, P04, P14, P16 and P17), IBEA has better
averages on two problems (P05 and P07), NSGAII has the best result on three problems
(P06, P10, and P18), SPEA2 on three problems (P08, P09 and P11), mIBEA has
it for P05, MOABHHB has a better average on P13, MOABHHC on P12, and
MOABHHK on P14. HHRL has the best average in P02 and HHCF in P03. Moreover,
HHLA did not excel in any problem.
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Table 23: Experiment III Hypervolume averages

Problem GDE3 IBEA NSGAII SPEA2 mIBEA MOABHHB MOABHHC MOABHHK HHLA HHRL HHCF

P01 2.84791E+24 2.08488E+24 2.66287E+24 2.71790E+24 2.57745E+24 2.84604E+24 2.84442E+24 2.77045E+24 2.82384E+24 2.83082E+24 2.75174E+24
P02 1.20897E+01 1.25610E+01 1.17707E+01 1.25111E+01 1.25435E+01 1.21048E+01 1.22152E+01 1.20754E+01 1.25842E+01 1.25956E+01 1.22624E+01
P03 3.40420E+01 3.28792E+01 3.33962E+01 3.42734E+01 3.28450E+01 3.31287E+01 3.39539E+01 3.27408E+01 3.42207E+01 3.43544E+01 3.44417E+01
P04 4.12492E+01 3.91803E+01 4.10414E+01 4.10798E+01 3.91526E+01 4.10824E+01 4.12221E+01 4.09849E+01 4.09005E+01 4.11760E+01 4.09022E+01
P05 4.29229E+01 4.31195E+01 4.29357E+01 4.29909E+01 4.31195E+01 4.30417E+01 4.30361E+01 4.31114E+01 4.31168E+01 4.31036E+01 4.30303E+01
P06 1.83777E+06 1.83368E+06 1.83818E+06 1.83533E+06 1.83375E+06 1.83638E+06 1.83721E+06 1.83707E+06 1.83543E+06 1.83605E+06 1.83718E+06
P07 4.68216E+00 4.73903E+00 4.64485E+00 4.68849E+00 4.73045E+00 4.72856E+00 4.72592E+00 4.72810E+00 4.72761E+00 4.71728E+00 4.67220E+00
P08 3.68066E+02 3.63116E+02 3.68054E+02 3.68172E+02 3.65368E+02 3.68039E+02 3.68035E+02 3.68054E+02 3.65596E+02 3.67869E+02 3.66795E+02
P09 8.86096E-01 8.84300E-01 8.86688E-01 8.86949E-01 8.83161E-01 8.84177E-01 8.86158E-01 8.84403E-01 8.85940E-01 8.86519E-01 8.84936E-01
P10 7.64228E-01 7.56240E-01 7.68136E-01 7.67995E-01 7.52942E-01 7.68120E-01 7.67354E-01 7.66666E-01 7.67507E-01 7.67569E-01 7.62415E-01
P11 7.51232E-01 7.51447E-01 7.52182E-01 7.53341E-01 7.48007E-01 7.51090E-01 7.51937E-01 7.51220E-01 7.52904E-01 7.53102E-01 7.52211E-01
P12 7.39104E-01 7.30254E-01 7.39384E-01 7.40054E-01 7.30272E-01 7.35503E-01 7.40063E-01 7.38684E-01 7.36341E-01 7.38086E-01 7.38719E-01
P13 4.46843E-01 4.60968E-01 4.54099E-01 4.51260E-01 4.55125E-01 4.61347E-01 4.60597E-01 4.59792E-01 4.50648E-01 4.60969E-01 4.50661E-01
P14 6.56092E-01 6.52218E-01 6.54558E-01 6.54922E-01 6.45212E-01 6.55455E-01 6.55529E-01 6.55423E-01 6.54099E-01 6.55615E-01 6.51219E-01
P15 9.79673E-01 9.75097E-01 9.80961E-01 9.79463E-01 9.78678E-01 9.90872E-01 9.89425E-01 9.91282E-01 9.89091E-01 9.88244E-01 9.87321E-01
P16 9.01918E-01 8.36830E-01 7.28744E-01 6.46054E-01 5.61843E-01 8.66175E-01 8.47810E-01 8.71773E-01 7.87492E-01 7.08809E-01 6.90451E-01
P17 9.07392E-01 8.68258E-01 9.03361E-01 9.01765E-01 8.91543E-01 8.94496E-01 8.94115E-01 8.94496E-01 8.94128E-01 8.67591E-01 8.92694E-01
P18 5.28786E-01 5.04137E-01 5.29036E-01 4.97061E-01 5.00425E-01 4.94500E-01 4.93520E-01 4.91520E-01 4.96037E-01 3.76589E-01 4.78611E-01
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Table 24 summarizes the performance of the algorithms considering how many times they
got the best averages, tied results and got worse results compared to the best one.

No algorithm performed well in all of the problems. In fact, IBEA, NSGAII and mIBEA
got worse averages than competitive ones. GDE3, MOABHHB and HHCF performed well
in half of the problems. SPEA2, MOABHHK and HHLA solved well the simple majority of
the problems (10 problems). HHRL and MOABHHC were the two best algorithms having
12 problems solved with good performance.

Table 24: Experiment III Summary

GDE3 IBEA NSGAII SPEA2 mIBEA MOABHHB MOABHHC MOABHHK HHLA HHRL HHCF
Best Average 5 2 3 3 1 1 1 1 0 1 1
Tied Average 4 5 3 7 5 8 11 9 10 11 8
Worse Average 9 11 12 8 12 9 6 8 8 6 9
Total Competitive
(Best + Tied)

9 7 6 10 6 9 12 10 10 12 9

Table 25 presents the statistical evaluation, similar to those presented in Experiment I
and II. According to this ranking, MOABHHC was the best-studied algorithm, followed
by HHRL, GDE3 and MOABHHB. mIBEA was the worst algorithm studied, while HHCF
was the worst studied hyper-heuristics. MOABHHK was the worst hyper-heuristic among
MOABHH instances.

Table 25: Average Rankings of the algorithms (Friedman) for Experiment III

Algorithm Ranking
GDE3 4.944444444444443
IBEA 7.555555555555555
NSGAII 5.61111111111111
SPEA2 5.388888888888888
mIBEA 8.166666666666666

MOABHHB 5.333333333333332
MOABHHC 4.722222222222221
MOABHHK 5.944444444444445

HHLA 6.055555555555556
HHRL 5.055555555555556
HHCF 7.222222222222223

7.4.3 Use of Low-level Meta-Heuristics

In this section, we address the following issue: how much a single LLH is chosen by a
particular hyper-heuristics. Figure 34 graphically presents this usage: for MOABHH instances
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(MOABHHB, MOABHHC and MOABHHK), it represents the percentage of participa-
tion in generating offspring along with the search. On the other hand, for HHRL, HHLA,
and HHCF, the figure presents the percentage of times that each LLH was chosen. The data
considers all problem instances, each of them running 30 times.

The particular behavior of each HH may be found by analyzing Figure 34. For example,
if we consider problem P03, one may notice that MOABHH instances have chosen more
times GDE3 (blue) and SPEA2 (red), while HHLA chose more often SPEA2. On the other
hand, HHRL and HHCF have chosen LLHs more uniformly. Table 26 presents a summarized
evaluation of this analysis, where we classified HHs behavior in 4 classes: (i) One Elitist:
problems where one LLH is clearly selected more times than any other2; (ii) Two Elitist:
problems where two LLHs are priviledged3; (iii) Three Elitist: problems where three LLHs are
selected more times than others4; (iv) Not Elitist: when there is no clear LLH preference.

Table 26: How elitist HHs are on selection LLHs

One Elitist Two Elitist Three Elitist Not Elitist
MOABHHB P01, P03,

P05, P09,
P11, P12, P13

P02, P04,
P07, P08, P14

P10, P16 P06, P15,
P17, P18

MOABHHC P01, P03,
P04, P05,
P09, P12

P02, P07,
P08, P10,
P11, P13, P14

P15, P16 P06, P17, P18

MOABHHK P01, P03,
P06, P09,
P11, P12, P16

P02, P04,
P05, P07,
P08, P10,
P14, P15

P13 P17, P18

HHLA P01, P03,
P07, P08,
P09, P11,
P12, P13, P17

P04, P05, P10 P14, P16, P18 P02, P06, P15

HHCF P01, P06,
P11, P12,
P16, P17, P18

P04, P07 P05, P08,
P10, P15

P02, P03,
P09, P13, P14

HHRL P01, P08,
P11, P12, P13

P04, P05,
P06, P07, P09

P02, P03,
P10, P14

P15, P16,
P17, P18

We can identify HHLA and HHCF with more problems classified as One Elitist, while
MOABHH and HHRL had more problems in Two Elitist category. For Three Elitist, HHLA,

2We have considered a threshold above 50% for this situation.
3We have considered a threshold above 40% for each LLH for this situation.
4We considered a threshold above 30% for each LLH for this situation.
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Figure 34: Utilization rate for the six hyper-heuristics
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HHCF and HHRL had four problems classified while MOABHH had three. Considering all
elitist classified problems (One Elitist + Two Elitist + Three Elitist) we can identify all HH
behaving in a similar way.

7.5 Conclusion

This chapter presents three experiments. The first evaluated MOABHH instances on
solving the WFG benchmark for two and three objectives. The second one evaluated MOABHH
instances solving four real-world continuous problems and one discrete problem instantiated
with different numbers of objectives. The third experiment compared MOABHH instances,
state-of-art hyper-heuristics and MOEAs on solving eighteen different continuous real-world
applications.

The first experiment showed MOABHHC employing more the best LLH, in this case,
IBEA, and having competitive results against the best MOEA. MOABHHB was the best
hyper-heuristic here. However, this is a benchmark experiment, which means this is limited
for drawing a concrete conclusion on the performance of the algorithms. However, this kind
of experiment was essential for the development of this research.

In the second experiment, instead of a benchmark, real-world problems were considered. In
these problems, we also have a great performing algorithm, so hyper-heuristics have as soon as
possible identify it and apply it in order to have competitive results against this best algorithm.
IBEA is also the best MOEA here. Taking into account the number of times with competitive
averages, that means, best hypervolume averages or averages statistically tied with the best,
MOABHHB is the best algorithm. Considering the Friedman Ranking for this experiment,
IBEA is also the best-studied algorithm.

Thus, this research reached the need for having a set of optimization problems where clearly
there is no single best algorithm. This was the primary objective of experiment III. This made
it the hardest test for the hyper-heuristic, but the most important to test them on real cross-
domain applications. At this point in the research, there was the need of making MOABHH
compete against state-of-art hyper-heuristics. As a result, HHRL and MOABHHC tied as
the best algorithm according to the number of competitive results while MOABHHK and
HHLA tied as the second-best. According to Friedman Ranking,MOABHHC was considered
the best-studied algorithm, followed by HHRL and MOABHHB.
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Experiments I and II have different conclusions as to the one presented by Experiment III.
The complexity of Copeland deteriorate results when there is a clear winner, but it helps when
there is no single winner in all of the problems.

The following chapters present future research and additional information.
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8 CONCLUSIONS AND FURTHER WORK

Over the years, multi-objective optimization has been tackled by meta-heuristics providing
researchers and engineers with an interesting way to solve their problems. In the past decade,
hyper-heuristics focused on multi-objective optimization have been designed with the objective
to improve search results and diminish the effort on choosing meta-heuristic components or
algorithms by themselves. This research belongs to this field, more precisely, it can be defined
as an online selection hyper-heuristic focused on selecting the most suitable algorithm, more
specifically a multi-objective evolutionary algorithm. Recent research has focused on this kind
of hyper-heuristic, and this includes this present research.

In this research, the Algorithm Selection Problem for multi-objective optimization was
attacked by a new approach designed using knowledge from Multi-Agent Systems and Social
Choice Theory. In this approach, algorithms were considered as candidates in one election and
quality indicators as voters.

This was not the first time researchers employed voting methods to deal with the ASP.
Despite that, this was the first time voting methods were employed for designing hyper-
heuristics.

As a multi-agent system, all components of this proposed hyper-heuristic could run in
parallel, allowing evolutionary algorithms to evolve the same population, each one with his
share. Thus, performance evaluations were more accurate because all those algorithms run at
the same search moment making elections fairer. This is a concept which differs this research
from other state-of-art hyper-heuristics that do not implement the concept of parallelism.

The first studies focused on how the proposed hyper-heuristic was compared to a clear
best algorithm on solving benchmark functions. This was really necessary to verify whether the
hypothesis could be plausible. After this, some real-world applications were introduced. Also,
three different voting methods were considered. From this point, it was demonstrated how
this approach could help researchers and engineers to diminish their effort in choosing multi-
objective evolutionary algorithms. However, these studies were limited to one great performing
algorithm to be identified. Thus, a study that clearly demonstrates the effect of the No Free

Lunch theorem was needed. This is the context of a Cross-Domain Application, where hyper-
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heuristic research compare their algorithms on several scenarios in order to identify which
hyper-heuristic performs better. Thus, state-of-art hyper-heuristics were considered and the
proposed hyper-heuristic faced her hardest test. Results showed the proposed hyper-heuristic
as very competitive against state-of-art hyper-heuristic. In fact, it overcomes them. This was
also the first time this kind of hyper-heuristic was submitted to several real-world applications
in the same study. Thus this effort was not just necessary to provide empirical results for this
research, but also to deliver to the scientific community how this kind of algorithm behaves
on real-world cross-domain applications.

From a practitioner’s point of view, using the proposed approach can save a user from
wasting a lot of time trying to run a tuning method to find the best metaheuristic to solve
a new problem. If, on the one hand, the proposed approach was not the one that obtained
the best result in all the problems studied in the experiments carried out, on the other hand,
it was not the one that obtained the worst results, having a good performance in most of
them. Indeed, MOABHH had the best performance considering the set of all problems from
all experiments, precisely because there is no meta-heuristic that has the best performance in
all of them, hence the interest of the adopted approach.

After performing all the three experiments, the research questions presented in this thesis
introduction were answered as follows:

RQ1 How does the proposed hyper-heuristic’s performance change when applied to different
MOPs?
Several problems were considered ranging from benchmarks to real-world problems. No
meta-heuristic was the best in all of the problems, especially on Experiment III, where
one MOEA can be good for one problem and bad-performing for another one. In this
scenario, we expect hyper-heuristics to have good performance. MOABHH did well,
found good solutions (according to Hypervolume) in most of the studied problems.

RQ2 How does the hyper-heuristic performance change when using different voting methods?
Overall, Kemeny-Young was the worst voting method studied. Borda clearly gave
MOABHH better performance on benchmarks (Experiment I), while Copeland helped
MOABHH to better solve real-world problems from Experiment III. For Experiment II,
both Copeland and Borda got really close results. It is possible to say that the complex-
ity of Copeland deteriorates MOABHH performance when there is a clear winner, but it
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helps when there is no single winner in all of the problems.

As future work, this hyper-heuristics will be studied across various applications in the dis-
crete multi-objective optimization domain, such as Search-Based Software Engineering Prob-
lems (HARMAN; JONES, 2001). The idea behind it is finding a group of real-world problems
where there is no clear best algorithm, the same as performed for continuous optimization, but
for discrete optimization. Another possible direction is to test different meta-heuristics not
classified as genetic algorithms such as MOEA/DD (LI et al., 2015b) (based on decomposition)
and SMPSO (NEBRO et al., 2009) (based on swarm intelligence). Such meta-heuristics can
produce interesting LLHs, since these have shown interesting solutions on solving continuous
optimization problems. Voters can also employ different learning methods and then different
perspectives from the same quality indicator can be obtained.

Regarding voting methods, their influence in the final result can be measured by running
MOABHH considering just one voter, i.e. one quality indicator, so no voting method would
be employed. If results deteriorate, then voting methods and multiple quality indicators are
necessary. Other voting methods also can be evaluated in order to better study the influence
of voting methods on MOABHH.

Considering multi-agent systems, some techniques like negotiation could be incorporated
into the population sharing step. Since this step is currently performed randomly, using some
intelligent agent models could generate interesting results.

Furthermore, recent hyper-heuristics such as (JÚNIOR; ÖZCAN; CARVALHO, 2020)
and (FRITSCHE; POZO, 2019; FRITSCHE; POZO, 2020) can be compared against
MOABHH.
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9 LIST OF PUBLICATIONS

Portions of the content described in this thesis have been previously published in Confer-
ences and Journal, as summarized in Table 27.

Table 27: Scientific production made during my PhD at USP/UoN

Title Conference/ Observations
Journal

Applying Copeland Voting to Design an Agent-
Based Hyper-Heuristic (CARVALHO; SICHMAN,
2017)

AAMAS’17 Most important conference on
MAS. Preliminary MOABHH
architecture. Experiment I

Multi-Agent Election-Based Hyper-Heuristics
(CARVALHO; SICHMAN, 2018a)

IJCAI’18 Doctoral Consortium
MOABHH architecture

Solving real-world multi-objective engineering opti-
mization problems with an Election-Based Hyper-
Heuristic (CARVALHO; SICHMAN, 2018b)

OptMAS’18 IJCAI Workshop
Preliminary Experiment II

Evolutionary Computation Meets Multiagent Sys-
tems for Better Solving Optimization Problems
(CARVALHO; SICHMAN, 2019)

GEAR’18
ISBN: 978-981-13-6935-3

Book Chapter
Literature review

.

Applying Social Choice Theory to Solve Engineer-
ing Multi-Objective Optimization Problems (CAR-
VALHO et al., 2020)

JCAES ISSN: 2195-3880
Experiment II

Comparative analysis of selection hyper-heuristics
for real-world multi-objective optimization problems
(CARVALHO; ÖZCAN; SICHMAN, 2021)

Applied Sciences ISSN: 2076-3417
Experiment III

Hyper-Heuristics based on Reinforcement Learning,
Balanced Heuristic Selection and Group Decision
Acceptance (JÚNIOR; ÖZCAN; CARVALHO, 2020)

Applied Soft Computing
ISSN: 1568-4946

Satisfying user preferences in optimised ridesharing
services: A multi-agent multi-objective optimisation
approach (CARVALHO; GOLPAYEGANI, 2022)

Applied Intelligence
ISSN: 1573-7497

Implementation GitHub github.com/vinixnan/MOABHH
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