• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.18.2023.tde-06112023-171908
Documento
Autor
Nome completo
Vinicius Marrara Pepino
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2023
Orientador
Banca examinadora
Borges, Ben Hur Viana (Presidente)
Figueroa, Hugo Enrique Hernandez
Frateschi, Newton Cesario
Gesualdi, Marcos Roberto da Rocha
Magalhães, Daniel Varela
Título em inglês
Metamaterials and metasurfaces for wavefront shaping and dispersion management
Palavras-chave em inglês
dispersion management
Fano resonances
metalens
metamaterials
metasurfaces
non-diffractive beams
passive amplification
Talbot effect
wavefront shaping
Resumo em inglês
Metamaterials and metasurfaces, cutting-edge technologies, have recently garnered significant attention. They provide unprecedented control over electromagnetic wave behavior, enabling the manipulation of light, sound, and other waveforms in unprecedented ways. Engineered at a sub-wavelength scale, these materials possess unique properties not found in natural substances. The concept of metamaterials arose from the notion of crafting artificial structures with distinctive electromagnetic characteristics through precise internal structure manipulation, yielding materials with extraordinary traits like negative and near-zero refractive indices, perfect absorption or reflection, enhanced polarization, chirality effects, and dispersion management.
Within this thesis, four primary contributions are outlined. Initially, a three-dimensional, all-dielectric, planar metalens, fabricated through 3D printing, enhances microwave focusing into a receiving antenna. This structure elevates antenna gain by 7.5 dB at 32.5 GHz within a 2.4 GHz bandwidth. The metalens achieves a focus with a full-width at half-maximum of approximately 0.85λ and a 3 dB depth-of-focus of around 5 cm. In azimuthal and elevation planes, the antenna's half-power beamwidth is reduced from 36° to 3° and from 4.5° to 3°, respectively, with the assistance of the metalens. Notably, the metalens performs effectively under oblique incidence, spanning 50° in the azimuthal plane and 40° in the elevation plane.
Next, a tunable terahertz Bessel beam with variable depth of focus (ranging from 22 cm to 40 cm) and adjustable beam width (from 3.7 mm to 6 mm) is designed for imaging and communication applications. Silicon microholed metasurfaces are organized in an Alvarez-type configuration. The meta axicon operates at 850 GHz and exhibits self-healing capabilities against obstructions considerably larger than the operating wavelength.
Subsequently, a fully passive terahertz pulse amplification device harnesses the temporal Talbot effect within a highly dispersive silicon-based metamaterial Bragg fiber. Three distinct strategies, identified as coherent pulse addition, forward Talbot illuminator, and backward Talbot illuminator, are introduced and explored to maximize passive Talbot effect gain. These approaches accommodate a wide range of output pulse shapes and yield gain factors of 5.8 dB (coherent pulse addition), 9.9 dB (forward Talbot illuminator), and 8.8 dB (backward Talbot illuminator). Numerical simulations indicate the potential of these methods for developing high-gain passive amplification terahertz devices.
The temporal Talbot effect practical observation in the microwave realm has been hindered by the requirement for controlled propagation through a highly dispersive waveguide. Overcoming this challenge, we implemented an ultra-wideband, linearly chirped Bragg grating within a standard microwave X-Band waveguide. Utilizing backwards Talbot array illuminators with particle swarm optimization, we achieved passive amplification with gains of 3.45 dB (for Gaussian pulses) and 4.03 dB (for raised cosine pulses). Moreover, numerical assessments indicate that the gain can theoretically exceed 8 dB with higher quality dielectrics. This breakthrough opens doors to various microwave applications of the Talbot effect, including temporal cloaking, sub-noise microwave signal detection, microwave pulse shaping, and microwave noise reduction.
Título em português
Metamateriais e metassuperficies para modulação de frente de onda e gerenciamento de dispersão
Palavras-chave em português
amplificação passiva
efeito Talbot
feixes não difrativos
gerenciamento de dispersão
metalentes
metamateriais
metassuperfícies
modulação de frente de onda
ressonâncias Fano
Resumo em português
Metamateriais e metassuperfícies, tecnologias de ponta, têm recentemente atraído atenção significativa da comunidade científica. Eles oferecem um controle sem precedentes sobre o comportamento de ondas eletromagnéticas, possibilitando a manipulação de luz, som e outras formas de ondas de maneiras inéditas. Fabricados em uma escala sub-comprimento de onda, esses materiais possuem propriedades únicas não encontradas em substâncias naturais. O conceito de metamateriais surgiu da ideia de criar estruturas artificiais com características eletromagnéticas distintas por meio de uma manipulação precisa de sua estrutura interna, resultando em materiais com traços extraordinários, como índices de refração negativos e próximos de zero, absorção ou reflexão perfeitas, efeitos de polarização e quiralidade aprimorados e gerenciamento de dispersão.
Nesta tese, são apresentadas quatro contribuições principais. Inicialmente, uma metalente plana tridimensional totalmente dielétrica, fabricada por meio de impressão 3D, aprimora o foco de micro-ondas em uma antena receptora. Essa estrutura eleva o ganho da antena em 7,5 dB a 32,5 GHz com uma largura de banda de 2,4 GHz. A metalente atinge um foco com uma largura completa à meia-altura de cerca de 0,85λ e uma profundidade de foco de 3 dB de aproximadamente 5 cm. Nos planos azimutal e de elevação, a largura do feixe à meia-potência da antena é reduzida de 36° para 3° e de 4,5° para 3°, respectivamente, com a ajuda da metalente. Vale ressaltar que a metalente funciona eficazmente sob incidência oblíqua, abrangendo 50° no plano azimutal e 40° no plano de elevação.
Em seguida, é projetado um feixe de Bessel sintonizável de terahertz, com profundidade de foco variando de 22 cm a 40 cm e largura do feixe ajustável de 3,7 mm a 6 mm, para aplicações de imagem e comunicação. Metassuperfícies de microfuros de silício são organizadas em uma configuração do tipo Alvarez. O meta-axicon opera a 850 GHz e demonstra capacidade de auto-regeneração contra obstruções muito maiores do que o comprimento de onda operacional.
Posteriormente, é proposto um dispositivo totalmente passivo de amplificação de pulsos de terahertz com base na exploração do efeito Talbot temporal em uma fibra de Bragg de metamaterial de silício altamente dispersiva. Três estratégias distintas, denominadas adição coerente de pulsos, iluminador Talbot direto e iluminador Talbot reverso, são introduzidas e exploradas para maximizar o ganho passivo do efeito Talbot. Essas abordagens acomodam uma ampla gama de formatos de pulsos de saída e resultam em fatores de ganho de 5,8 dB (adição coerente de pulsos), 9,9 dB (iluminador Talbot direto) e 8,8 dB (iluminador Talbot reverso). Simulações numéricas indicam o potencial desses métodos para o desenvolvimento de dispositivos de amplificação de terahertz de alto ganho.
A observação prática do efeito Talbot temporal no domínio das micro-ondas tem sido prejudicada pela necessidade de propagação controlada por meio de um guia de ondas altamente dispersivo. Superando esse desafio, implementamos uma rede de Bragg linearmente chirpada de banda ultralarga em um guia de ondas de micro-ondas padrão na faixa X. Utilizando iluminadores de matriz Talbot reversa auxiliados pela otimização por enxame de partículas, alcançamos amplificação passiva com ganhos de 3,45 dB (para pulsos gaussiano) e 4,03 dB (para pulsos cosseno elevado). Além disso, avaliações numéricas indicam que o ganho pode teoricamente superar 8 dB com dielétricos de maior qualidade. Essa conquista abre portas para várias aplicações das micro-ondas do efeito Talbot, incluindo camuflagem temporal, detecção de sinal de micro-ondas abaixo do ruído, modelagem de pulsos de micro-ondas e redução de ruído de micro-ondas.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2023-11-07
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2024. Todos os direitos reservados.