• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.11.2021.tde-28052021-151316
Document
Author
Full name
Julio Cezar Souza Vasconcelos
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
Piracicaba, 2021
Supervisor
Committee
Ortega, Edwin Moises Marcos (President)
Labra, Filidor Edilfonso Vilca
Suzuki, Adriano Kamimura
Title in English
The parametric, semiparametric and random effect regression model based on the extension of the generalized inverse Gaussian distribution
Keywords in English
Additive model
Odd log-logistic generator
Partial model
Random effect
Semiparametric model
Abstract in English
We propose a regression model based on the four-parameter distribution called generalized inverse Gaussian odd log-logistic (OLLGIG) with two systematic components suitable for unimodal and bimodal data that extends the heteroscedastic GIG regression model. Additive, partial or semi-parametric regression models can be an option when the response variable and the explanatory variable have a nonlinear relationship, that is, the fundamental assumption of linearity between these variables does not hold. With this in mind, three flexible models are proposed, namely additive, partial and semiparametric regression models based on the OLLGIG distribution with a systematic structure, considering three different types of penalized smoothings generated by splines. Many studies in the areas of public health, economics, agronomics, medicine, biology and social sciences, among others, involve repeated observations of a response variable. The expression "repeated measures" is used to designate measurements obtained for the same variable or in the same experimental unit on more than one occasion. Various experimental designs with repeated measurements exist, such as split-plot, crossover and longitudinal. These types of investigations are called studies of correlated data and play a fundamental role in the analysis of results, where it is possible to characterize changes in the characteristics of an individual by associating these variations to a set of covariates. Due to their nature, the repeated measures have a correlation structure that plays an important role in the analysis of these types of data. In addition, the distribution of the response variable may present asymmetry or bimodality. Thus, a regression with a normal random intercept is introduced based on the OLLGIG distribution. In linear and random regressions, the maximum likelihood method is adopted for the models: additive, partial and semiparametric OLLGIG and the penalized maximum likelihood method are used to estimate the parameters of the proposed models. In addition, several simulations are performed for different parameter configurations and sample sizes to verify the accuracy of the maximum likelihood and penalized maximum likelihood estimators. Diagnostic analyses based on case-deletion and quantile residuals are performed. To prove the potential of the proposed regression models, adjustments are made with real data.
Title in Portuguese
O modelo de regressão paramétrico, semiparamétrico e de efeito aleatório baseado na extensão da distribuição Gaussiana inversa generalizada
Keywords in Portuguese
Efeito aleatório
Gerador odd log-logístico
Modelo aditivo
Modelo parcial
Modelo semiparamétrico
Abstract in Portuguese
Propomos um modelo de regressão baseado na distribuição de quatro parâmetros denominada odd log-logistic Gaussiana inversa generalizada (OLLGIG) com dois componentes sistemáticos adequados para dados unimodais e bimodais que estendam o modelo de regressão GIG heterocedástico. Os modelos de regressão aditivo, parcial ou semiparamétrico podem ser uma opção quando a variável resposta e a variável explicativa tem uma relação não linear, ou seja, não é mais levado em conta uma pressuposição fundamental de linearidade entre essas variáveis. Pensando nisso é proposto três modelos flexíveis denominados de modelos de regressão aditivo, parcial e semiparamétrico baseado na distribuição OLLGIG com uma estrutura sistemática, considerando três diferentes tipos de suavizações penalizadas gerados por splines. Muitos estudos nas áreas de saúde pública, economia, agronomia, medicina, biologia e ciências sociais, entre outros, envolvem observações repetidas de uma variável resposta. A expressão "medidas repetidas" é utilizada para designar medidas obtidas para a mesma variável ou na mesma unidade experimental em mais de uma ocasião. Vários projetos experimentais com medidas repetidas são comuns, como split-plot, crossover e longitudinal. Esses tipos de investigações são denominados estudos de dados correlacionados e desempenham um papel fundamental na análise dos resultados, onde é possível caracterizar alterações nas características de um indivíduo, associando essas variações a um conjunto de covariáveis. Devido à sua natureza, as medidas repetidas possuem uma estrutura de correlação que desempenha um papel importante na análise desses tipos de dados, além disso, a distribuição da variável resposta pode apresentar assimetria ou bimodalidade. Assim, é introduzida uma regressão com intercepto aleatório normal com base na distribuição OLLGIG. Na regressão linear e com efeito aleatório e adotado o método de máxima verossimilhança, já para os modelos: aditivo, parcial e semiparamétrico OLLGIG e utilizado o método de máxima verossimilhança penalizada para estimar os parâmetros dos modelos propostos. Além disso, diversas simulações são realizadas para diferentes configurações de parâmetros e tamanhos de amostras para verificar a precisão dos estimadores de máxima verossimilhança e máxima verossimilhança penalizada. São realizadas análises de diagnósticos baseada em case-deletion e resíduos quantílicos. Para comprovar a potencialidade dos modelos de regressão propostos, são realizados ajustes com dados reais.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
There are withheld file due to requirements (data publishing, patents or rights).
Release Date
2023-05-28
Publishing Date
2021-06-01
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.