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RESUMO

O modelo de regressão paramétrico, semiparamétrico e de efeito aleatório baseado na extensão da
distribuição Gaussiana inversa generalizada

Propomos um modelo de regressão baseado na distribuição de quatro parâmetros denomi-
nada odd log-logistic Gaussiana inversa generalizada (OLLGIG) com dois componentes sistemáticos
adequados para dados unimodais e bimodais que estendam o modelo de regressão GIG heterocedás-
tico. Os modelos de regressão aditivo, parcial ou semiparamétrico podem ser uma opção quando a
variável resposta e a variável explicativa tem uma relação não linear, ou seja, não é mais levado em
conta uma pressuposição fundamental de linearidade entre essas variáveis. Pensando nisso é proposto
três modelos flexíveis denominados de modelos de regressão aditivo, parcial e semiparamétrico base-
ado na distribuição OLLGIG com uma estrutura sistemática, considerando três diferentes tipos de
suavizações penalizadas gerados por splines. Muitos estudos nas áreas de saúde pública, economia,
agronomia, medicina, biologia e ciências sociais, entre outros, envolvem observações repetidas de
uma variável resposta. A expressão “medidas repetidas” é utilizada para designar medidas obtidas
para a mesma variável ou na mesma unidade experimental em mais de uma ocasião. Vários projetos
experimentais com medidas repetidas são comuns, como split-plot, crossover e longitudinal. Esses
tipos de investigações são denominados estudos de dados correlacionados e desempenham um papel
fundamental na análise dos resultados, onde é possível caracterizar alterações nas características de
um indivíduo, associando essas variações a um conjunto de covariáveis. Devido à sua natureza, as
medidas repetidas possuem uma estrutura de correlação que desempenha um papel importante na
análise desses tipos de dados, além disso, a distribuição da variável resposta pode apresentar assi-
metria ou bimodalidade. Assim, é introduzida uma regressão com intercepto aleatório normal com
base na distribuição OLLGIG. Na regressões linear e com efeito aleatório e adotado o método de
máxima verossimilhança, já para os modelos: aditivo, parcial e semiparamétrico OLLGIG e utilizado
o método de máxima verossimilhança penalizada para estimar os parâmetros do modelos propostos.
Além disso, diversas simulações são realizadas para diferentes configurações de parâmetros e tama-
nhos de amostras para verificar a precisão dos estimadores de máxima verossimilhança e máxima
verossimilhança penalizada. São realizadas análises de diagnósticos baseada em case-deletion e resí-
duos quantílicos. Para comprovar a potencialidade dos modelos de regressão propostos, são realizados
ajustes com dados reais.

Palavras-chave: Gerador Odd Log-Logístico, Modelo Aditivo, Modelo Parcial, Modelo Semipara-
métrico, Efeito Aleatório



7

ABSTRACT

The parametric, semiparametric and random effect regression model based on the extension of the
generalized inverse Gaussian distribution

We propose a regression model based on the four-parameter distribution called generalized
inverse Gaussian odd log-logistic (OLLGIG) with two systematic components suitable for unimo-
dal and bimodal data that extends the heteroscedastic GIG regression model. Additive, partial or
semi-parametric regression models can be an option when the response variable and the explanatory
variable have a nonlinear relationship, that is, the fundamental assumption of linearity between these
variables does not hold. With this in mind, three flexible models are proposed, namely additive,
partial and semiparametric regression models based on the OLLGIG distribution with a systematic
structure, considering three different types of penalized smoothings generated by splines. Many stu-
dies in the areas of public health, economics, agronomics, medicine, biology and social sciences, among
others, involve repeated observations of a response variable. The expression “ repeated measures ”
is used to designate measurements obtained for the same variable or in the same experimental unit
on more than one occasion. Various experimental designs with repeated measurements exist, such as
split-plot, crossover and longitudinal. These types of investigations are called studies of correlated
data and play a fundamental role in the analysis of results, where it is possible to characterize changes
in the characteristics of an individual by associating these variations to a set of covariates. Due to
their nature, the repeated measures have a correlation structure that plays an important role in the
analysis of these types of data. In addition, the distribution of the response variable may present
asymmetry or bimodality. Thus, a regression with a normal random intercept is introduced based
on the OLLGIG distribution. In linear and random regressions, the maximum likelihood method is
adopted for the models: additive, partial and semiparametric OLLGIG and the penalized maximum
likelihood method are used to estimate the parameters of the proposed models. In addition, several
simulations are performed for different parameter configurations and sample sizes to verify the accu-
racy of the maximum likelihood and penalized maximum likelihood estimators. Diagnostic analyses
based on case-deletion and quantile residuals are performed. To prove the potential of the proposed
regression models, adjustments are made with real data.

Keywords: Odd Log-Logistic Generator, Additive Model, Partial Model, Semiparametric Model,
Random Effect
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1 INTRODUTION

The inverse Gaussian (IG) distribution is used to model many phenomena in diverse areas,
such as economics, engineering, business, social policy, real estate market, and natural events, among
others. An extension of the IG distribution that has been used widely is the generalized inverse Gaussian
(GIG), which has positive support. It was initially proposed by Good (1953) in a study of population
frequencies. Many papers have examined the structural properties of the GIG distribution. Sichel (1975)
used it to produce mixtures of Poisson distributions. The behavior of the GIG distribution and various
of its statistical properties were addressed by Jørgensen (1982) and Atkinson (1982). Dagpunar (1989)
proposed algorithms to simulate this distribution. Nguyen et al. (2003) pointed out that it has positive
asymmetry. Madan et al. (2008) demonstrated that the Black-Scholes formula in finance can be expressed
in terms of a function of the GIG distribution. More recently, Koudou and Ley (2014) published a
list of its properties and Lemonte and Cordeiro (2011) described some mathematical properties of the
exponentiated generalized inverse Gaussian distribution (EGIG).

In the majority of experiments, the response variable is influenced by explanatory variables
that elucidate determined characteristics of individuals. Thus, the inclusion of covariables in a regression
model is a way to represent the heterogeneity of a population. These covariables, in turn, should be
considered in some way in the model to increase its predictive power. The statistical literature contains
many types of regression models, such as the semiparametric generalized linear model proposed by Green
and Yandell (1985), in which the authors added a nonparametric term in the linear predictor. Another
extension of generalized linear models is the generalized additive model (GAM) proposed by Hastie and
Tibshirani (1990), in which the term that is controlled in parametric form is altered by an arbitrary
function and comes to be controlled in nonparametric form, estimated by smoothed curves (e.g., splines).
Rigby and Stasinopoulos (2001) developed generalized additive models for location, scale and shape
(GAMLSS), which are widely used in various areas of science. This type of modeling is very flexible,
because it allows modeling the location, scale and shape parameters simultaneously.

Several papers have proposed regression models with random effects. Among these works
are those of Muniz-Terrera et al. (2016), who developed random effect parametric and nonparametric
regressions to analyze cognitive test data; Coupé (2018), who reported advances in statistical modeling
in linguistics based in linear mixed-effects regressions; Ho et al. (2019), who presented an analysis of
microbiome relative abundance data using a zero-inflated beta GAMLSS model and a meta-analysis of
studies using random effects models; Hashimoto et al. (2019), who introduced the random effect log-Burr
XII regression; and Dirmeier et al. (2020), who presented host factor prioritization for pan-viral genetic
perturbation screens using random intercept models and network propagation. In this sense, in this work
we propose parametric, semiparametric and random effect regression models.

For this purpose, our first objective is to define a new four-parameter distribution called the
odd log-logistic generalized inverse Gaussian (OLLGIG) to model data pertaining to areas such as the
real estate market, engineering and natural phenomena, among others. This model is noteworthy because
besides modeling unimodal data, it can also model data where the response variable is bimodal, making it
an alternative that in many cases can be more effective than mixture models, in which different situations
require two distributions to enable modeling data where the response variable has two modes, making the
model more complex. In turn, with respect to semiparametric models, our second objective is to build
a regression model based on the OLLGIG distribution that can model unimodal and bimodal data as
well as data using extensions of linear regression models, such as the additive, partial and semiparametric
cases, in which the different systematic penalized smoothing routines, consisting of splines, are considered
in the systematic component. And finally, our third objective is to analyze the correlated data in the
presence of bimodality and asymmetry, and based on the studies described, to perform regression with
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normal random intercepts based on the OLLGIG for the purpose of considering the possible presence of
heterogeneity among some cities in the state of São Paulo, Brazil.

We also describe as special cases the generalized inverse Gaussian (GIG) and inverse Gaus-
sian (IG) distributions, obtain some mathematical properties and discuss the maximum likelihood and
penalized maximum likelihood estimation of the parameters. For these models, we present some ways
to include global influence (case deletion), and also develop residual analyses based on quantile residu-
als. Several simulation studies are presented for different configurations of the parameters and sample
sizes, and the empirical distribution of the residuals is shown and compared with the standard normal
distribution. The results of these studies suggest that the empirical distribution of the quantile residuals
for the OLLGIG regression model with two regression structures, along with the additive, partial and
semiparametric models, as well as those with random effect on the intercept, have high concordance with
the standard normal distribution. This qualifying material is organized as follows.

In Chapter 2, we define a new four-parameter model called the odd log-logistic generalized
inverse Gaussian distribution, which extends the generalized inverse Gaussian distributions. We obtain
some structural properties of the new distribution and construct an extended regression model based on
this distribution with two systematic structures. We adopt the method of maximum likelihood to estimate
the model parameters. In addition, various simulations are performed for different parameter settings
and sample sizes to check the accuracy of the maximum likelihood estimators. We provide a diagnostics
analysis based on case-deletion and quantile residuals. Finally, the potential of the new regression model
to predict urban property values is illustrated by means of real data.

In Chapter 3 we propose three flexible regression models, called additive, partial and semipa-
rametric, based on the odd log-logistic generalized inverse Gaussian distribution under three types of
penalized smoothing. We adopt the penalized maximum likelihood method to estimate the parameters
of the proposed regression models. Furthermore, we present several simulations carried out for diffe-
rent configurations of the parameters and sample sizes to verify the precision of the penalized maximum
likelihood estimators. The regression is applied to ethanol data and air quality data.

In Chapter 4, a random effect regression is defined to model correlated data. The maximum
likelihood is adopted to estimate the parameters and various simulations are performed for correlated
data. Residuals are proposed for the new regression whose empirical distribution is close to normal. The
usefulness of the regression is verified based on the average price per hectare of bare land in 10 cities in
the state of São Paulo (Brazil).
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2 THE NEW ODD LOG-LOGISTIC GENERALIZED INVERSE GAUSSIAN
REGRESSION MODEL

Abstract: We define a new four-parameter model called the odd log-logistic generalized inverse
Gaussian distribution which extends the generalized inverse Gaussian and inverse Gaussian distributi-
ons. We obtain some structural properties of the new distribution. We construct an extended regression
model based on this distribution with two systematic structures, which can provide better adjustments
to actual data than other special regression models. We adopt the method of maximum likelihood to
estimate the model parameters. In addition, various simulations are performed for different parameter
settings and sample sizes to check the accuracy of the maximum likelihood estimators. We provide a
diagnostics analysis based on case-deletion and quantile residuals. Finally, the potentiality of the new
regression model to predict price of urban property is illustrated by means of real data.

Keywords: Generalized inverse Gaussian distribution; Moment; Odd log-logistic generator; Regression
model.

2.1 Introduction

The inverse Gaussian (IG) distribution is widely used in several research areas, such as life-
time analysis, reliability, meteorology and hydrology, engineering and medicine, among others. Some
extensions of the IG distribution have appeared in the literature. For example, the generalized inverse
Gaussian (GIG) distribution with positive support introduced by Good (1953) in a study of population
frequencies. Several papers have investigated the structural properties of the GIG distribution. Sichel
(1975) used this distribution to construct mixtures of Poisson distributions. Statistical properties and
distributional behavior of the GIG distribution were discussed by Jørgensen (1982) and Atkinson (1982).
Dagpunar (1989) provided algorithms for simulating this distribution. Nguyen et al. (2003) showed that
it has positive skewness. More recently, Madan et al. (2008) proved that the Black-Scholes formula in
finance can be expressed in terms of the GIG distribution function. Koudou and Ley (2014) presented
a survey about its characterizations and Lemonte and Cordeiro (2011) obtained some mathematical
properties of the exponentiated generalized inverse Gaussian (EGIG) distribution.

In this paper, we study a new four-parameter model named the odd log-logistic generalized
inverse Gaussian (OLLGIG) distribution which contains as special cases the GIG and IG distributions,
among others. Its major advantage is the flexibility in accommodating several forms of the density
function, for instance, bimodal and unimodal shapes. It is also suitable for testing goodness-of-fit of
some sub-models.

Our main objective is to study a new regression model with two systematic structures based
on the OLLGIG distribution. We obtain some mathematical properties and discuss maximum likelihood
estimation of the parameters. For these model, we presented some ways to perform global influence
(case-deletion) and additionally, we developed residual analysis based on the quantile residual. For
different parameter settings and sample sizes, various simulation studies were performed and the empirical
distribution of quantile residual was displayed and compared with the standard normal distribution.
These studies suggest that the empirical distribution of the quantile residual for the OLLGIG regression
model with two regression structures a high agreement with the standard normal distribution.

This paper is organized as follows. In Section 2.2, we define the OLLGIG distribution. In
Section 2.3, we obtain some of its structural properties. We define the OLLGIG regression model in
Section 2.4 and evaluate the performance of the maximum likelihood estimators (MLEs) of the model
parameters by means of a simulation study. In Section 2.5, we adopt the case-deletion diagnostic measure
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and define quantile residuals for the fitted model. Further, we perform various simulations for these
residuals. In Section 2.6, we provide two applications to real data to illustrate the flexibility of the
OLLGIG regression model. Finally, some concluding remarks are offered in Section 2.7.

2.2 The OLLGIG distribution

The GIG distribution (Jørgensen, 1982) has been applied in several areas of statistical research.
The cumulative distribution function (cdf) and probability density function (pdf) of the GIG distribution
are given by (for y > 0)

Gµ,σ,ν(y) =

∫ y

0

(
b

µ

)ν
tν−1

2Kν(σ−2)
exp

[
− 1

2σ2

(
b t

µ
+

µ

b t

)]
dt (2.1)

and

gµ,σ,ν(y) = Cyν−1 exp
[
− 1

2σ2

(
b y

µ
+

µ

b y

)]
, (2.2)

where µ > 0 is the location parameter, σ > 0 is the scale parameter, ν ∈ R is the shape parameter,
Kν(t) =

1
2

∫∞
0

yν−1 exp
[
− 1

2 t
(
u+ u−1

)]
du is the modified Bessel function of the third kind and index ν,

b = Kν+1(σ
−2)/Kν(σ

−2) and C = C(µ, σ, ν) =
(

b
µ

)ν
/2Kν(σ

−2).
We denote by W ∼ GIG(µ, σ, ν) a random variable having density function (2.2). The mean

and variance of W are

E(W ) = µ and V (W ) = µ2

[
2σ2

b
(ν + 1) +

1

b2
− 1

]
, (2.3)

respectively.
The moment generating function (mgf) of W reduces to

M(t) =

(
1− 2µσ2 t

b

)−ν/2

Kν(σ
−2)−1 Kν

[
1

σ2

(
1
2µσ2 t

b

)1/2
]
. (2.4)

We use the re-parameterized GIG distribution according to GAMLSS package in R software. For example,
we have GIG(µ, σµ1/2,−0.5) = IG(µ, σ). Other properties of the GIG distribution are investigated by
Jørgensen (1982).

The statistical literature is filled with hundreds of continuous univariate distributions. Recently,
several methods of introducing one or more parameters to generate new distributions have been proposed.
Based on the odd log-logistic generator (OLL-G) (Gleaton and Lynch, 2006), we define the OLLGIG cdf,
say F (y) = F (y;µ, σ, ν, τ), by integrating the log-logistic density function as follows

F (y) =

∫ Gµ,σ,ν (y)

Ḡµ,σ,ν (y)

0

τ xτ−1

(1 + xτ )2
dx =

Gµ,σ,ν(y)
τ

Gµ,σ,ν(y)τ + Ḡµ,σ,ν(y)τ
, (2.5)

where Ḡµ,σ,ν(y) = 1 − Gµ,σ,ν(y), µ > 0 is a position parameter, σ > 0 is a scale parameter and ν ∈ R
and τ > 0 are shape parameters. Clearly, Gµ,σ,ν(y) is a special case of (2.5) when τ = 1.

Henceforth, we write η(y) = Gµ,σ,ν(y) to simplify the notation. The OLLGIG density function
can be expressed as

f(y) = f(y;µ, σ, ν, τ) =

(
b

µ

)ν
τ yν−1

2Kν (σ−2)
exp

[
− 1

2σ2

(
by

µ
+

µ

b y

)]
×

{η(y)[1− η(y)]}τ−1 {η(y)τ + [1− η(y)]τ}−2. (2.6)

The main motivations for the OLLGIG distribution are to make its skewness and kurtosis more
flexible (compared to the GIG model) and also allow bi-modality. We have τ = log

[
F (y)
F̄ (y)

]
/ log

[
η(y)
η̄(y)

]
,
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where F̄ (y) = 1 − F (y) and η̄(y) = 1 − η(y). Thus, the parameter τ represents the quotient of the log
odds ratio for the new and baseline distributions. Note that the pdf and cdf of the OLLGIG distribution
depend on integrals, which are calculated numerically in the same way as those of the Birnbaum-Saunders
distribution.

Hereafter, we assume that the random variable Y follows the OLLGIG cdf (2.5) with parameters
(µ, σ, ν, τ)T , say Y ∼ OLLGIG(µ, σ, ν, τ). The OLLGIG distribution contains as special cases the GIG
distribution when τ = 1 and the IG distribution when τ = 1, σ = σµ1/2 and ν = −0.5.

Some plots of the OLLGIG density for selected parameter values are displayed in Figure 2.1. It
is evident that the proposed distribution is much more flexible, especially in relation to bi-modality (for
0 < τ < 1), than the GIG and IG distributions.
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Figure 2.1. Plots of the OLLGIG density for some parameter values.

Equation (2.5) has tractable properties especially for simulations, since its quantile function
(qf) takes the simple form

y = QGIG

(
u1/τ

u1/τ + [1− u]1/τ

)
, (2.7)

where QGIG(u) = G−1
µ,σ,ν(u) is the qf of the GIG distribution. This scheme is useful because of the

existence of fast generators for GIG random variables in some statistical packages. For example, we can
fit the generalized additive models for the location, scale, and shape (GAMLSS) (Stasinopoulos et al.,
2007) in R. We use the GAMLSS package to simulate data from this nonlinear equation. The plots
comparing the exact OLLGIG densities and the histograms from two simulated data sets with 100, 000

replications for selected parameter values are displayed in Figure 2.2. These plots (and several others not
shown here) indicate that the simulated values are consistent with the OLLGIG distribution.

2.3 Properties of the OLLGIG model

2.3.1 Linear representation

By defining the sets Ii = {(k, j); k− j = i} for i = 0, 1, . . ., and following the results of Lemonte
and Cordeiro (2011), Section 3, we can expand η(y) = Gµ,σ,ν(y) as

η(y) = 1− ρ− yν
∞∑
i=0

di y
i,
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Figure 2.2. Histograms and plots of the OLLGIG density.

where ρ = ρ(µ, σ, ν) = C
(

b
2µσ2

)−ν ∑∞
j=0 Γ(ν − j)[−(4σ2)−1]j/j!, di =

∑
(k,j)∈Ii

aj,k and

aj,k = aj,k(µ, σ, ν) =
(−1)k+j+1 C

(k − j + ν) j! k!

bk−j µj−k

2k+jσ2(k+j)
.

To calculate ρ, the index j can stop after a large number of summands.
Further, we can rewrite η(y) after some algebra as

η(y) = 1− ρ− c0 −
∞∑
i=1

ci y
i, (2.8)

where ci =
∑i

k=0 fk di−k (for i = 0, 1, . . .), (ν)r = ν(ν − 1) · · · (ν − r + 1) is the descending factorial and
fj =

∑∞
r=j(−1)r−j

(
r
j

)
(ν)r/r!.

We obtain an expansion for F (y) in (2.5). First, we use a power series for η(y)τ (τ real)

η(y)τ =

∞∑
k=0

pk η(y)k, (2.9)

where

pk = pk(τ) =

∞∑
j=k

(−1)k+j

(
α

j

)(
j

k

)
.

For any real τ , we consider the generalized binomial expansion

[1− η(y)]
τ
=

∞∑
k=0

(−1)k
(
α

k

)
η(y)k. (2.10)

Inserting (2.9) and (2.10) in Equation (2.5) gives

F (y) =

∑∞
k=0 pk η(y)

k∑∞
k=0 qk η(y)k

,

where qk = qk(τ) = pk(τ) + (−1)k
(
τ
k

)
(for k ≥ 0). The ratio of the two power series in the last equation

can be reduced to

F (y) =

∞∑
k=0

wk η(y)
k, (2.11)
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where the coefficients wk’s (for k ≥ 0) are determined from the recurrence equation

wk = wk(τ) = q−1
0

(
pk −

k∑
r=1

qr wk−r

)
.

By differentiating (2.11), the pdf f(y) reduces to

f(y) =

∞∑
k=0

wk+1 hk+1(y), (2.12)

where hk+1(y) = (k+1) η(y)k gµ,σ,ν(y) is the exponentiated generalized inverse Gaussian (EGIG) density
function with power parameter k + 1 (for k ≥ 0).

We can derive a linear representation for f(y) in terms of GIG densities based on the previous
results and following the expansions of Lemonte and Cordeiro (2011) that lead to their Equation 2.16.
First, we can express hk+1(y) as

hk+1(y) =

k∑
j=0

m
(k)
j πj(y). (2.13)

Here, πj(y) represents the GIG(µ, σ, ν + j) density function and the coefficients are given by m
(k)
j =

(k+1) vj,k C(µ, σ, ν)/C(µ, σ, ν+ j), where vj,k =
∑k

i=0(−1)i
(
k
i

) ∑i
r=0

(
i
r

)
ρi−r tj,r and the quantities tj,r

are determined from the recurrence relation tj,r = j−1
∑j

m=1[(r + 1)m − j] cm tj−m,r (for j ≥ 1) and
t0,r = 1 with the cm’s given in Equation (2.8).

By combining (2.12) and (2.13) and changing
∑∞

k=0

∑k
j=0 by

∑∞
j=0

∑∞
k=j , we obtain

f(y) =

∞∑
j=0

sj πj(y), (2.14)

where sj =
∑∞

k=j wk+1 m
(k)
j .

Equation (2.14) reveals that the OLLGIG density function is an infinite linear combination of
GIG densities.

2.3.2 Two properties

Equation (2.14) becomes useful in deriving several mathematical properties of the proposed
distribution using well-known properties of the GIG distribution. We provide only two examples. The
rth moment about zero of the GIG(µ, σ, ν) random variable defined by (2.2) is

E(W r) =
(µ
b

)r Kν+r(σ
−2)

Kν(σ−2)
.

Then, the ordinary moments of the OLLGIG random variable Y follow from (2.14) as

E(Y r) =
µr

Kν(σ−2)

∞∑
j=0

sj
Kν+j+r(σ

−2)

brj
,

where bj = Kν+j+1(σ
−2)/Kν(σ

−2).
By combining (2.14) and (2.4), the generating function of Y takes the form

MY (t) =
1

Kν(σ−2)

∞∑
j=0

sj

(
1− 2µσ2 t

bj

)−ν/2

Kν+j

[
1

σ2

(
1− 2µσ2 t

bj

)1/2
]
.



18

2.4 The OLLGIG regression model

In many practical applications, the lifetimes are affected by explanatory variables such as sex,
smoking, diet, blood pressure, cholesterol level and several others. So, it is important to explore the
relationship between the response variable and the explanatory variables. Regression models can be
proposed in different forms in statistical analysis. In this section, we define the OLLGIG regression
model with two systematic structures based on the new distribution. It is a feasible alternative to the
GIG and IG regression models for data analysis.

Regression analysis involves specifications of the distribution of Y given a vector x = (x1, ..., xp)
T

of covariates. We relate the parameters µ and σ to the covariates by the logarithm link functions

µi = exp(xT
i β1) and σi = exp(xT

i β2), i = 1, . . . , n, (2.15)

respectively, where β1 = (β11, ..., β1p)
T and β2 = (β21, ..., β2p)

T denote the vectors of regression coef-
ficients and xT

i = (xi1, ..., xip). The most important of the parametric regression models defines the
covariates in x which model both µ and σ.

Consider a sample (y1, x1), ..., (yn, xn) of n independent observations. Conventional likelihood
estimation techniques can be applied here. The total log-likelihood function for the vector of parameters
θ = (βT

1 ,β
T
2 , ν, τ)

T from model (2.15) is given by

l(θ) = n log(τ) + ν

n∑
i=1

log
(

b

µi

)
+ (ν − 1)

n∑
i=1

log(yi)−
n∑

i=1

log
[
2Kν

(
1

σ2
i

)]
−

1

2

n∑
i=1

1

σ2
i

(
b yi
µi

+
µi

b yi

)
+ (τ − 1)

n∑
i=1

log{η(yi)[1− η(yi)]} −

2

n∑
i=1

log{η(yi)τ + [1− η(yi)]
τ}, (2.16)

where Kν(·) and η(·) are defined in Section 2.2. The MLE θ̂ of θ can be calculated by maximizing
the log-likelihood (2.16) numerically in the GAMLSS package of the R software. The advantage of this
package is that we can adopt many maximization methods, which will depend only on the current fitted
model. Initial values for β1 and β2 are taken from the fit of the GIG regression model with τ = 1. We
do not have problems of maximizing this log-likelihood function. This fact is shown in Section 4.1, where
some simulations of the proposed regression model are given under different scenarios.

Under general regularity conditions, the asymptotic distribution of (θ̂−θ) is multivariate normal
N2p+2(0,K(θ)−1), where K(θ) is the expected information matrix. The asymptotic covariance matrix
K(θ)−1 of θ̂ can be approximated by the inverse of the (2p+ 2)× (2p+ 2) observed information matrix
−L̈(θ). The elements of this matrix are calculated numerically. The approximate multivariate normal
distribution N2p+2(0,−L̈(θ̂)−1) for θ̂ can be used in the classical way to construct approximate confidence
for the parameters in θ.

We can use the likelihood ratio (LR) statistic for comparing some special sub-models with the
OLLGIG regression model. We consider the partition θ = (θT

1 ,θ
T
2 )

T , where θ1 is a subset of parameters
of interest and θ2 is a subset of remaining parameters. The LR statistic for testing the null hypothesis H0 :

θ1 = θ
(0)
1 versus the alternative hypothesis H1 : θ1 ̸= θ

(0)
1 is given by w = 2{ℓ(θ̂)− ℓ(θ̃)}, where θ̃ and θ̂

are the estimates under the null and alternative hypotheses, respectively. The statistic w is asymptotically
(as n → ∞) distributed as χ2

k, where k is the dimension of the subset of parameters θ1 of interest. For
example, the test of H0 : τ = 1 versus H : τ ̸= 1 is equivalent to compare the OLLGIG regression model
with the GIG regression model and the LR statistic reduces to w = 2

{
l
(
β̂1, β̂2, ν̂, τ̂

)
− l
(
β̃1, β̃2, ν̃, 1

)}
where β̂1, β̂2, ν̂ and τ̂ are the MLEs under H and β̃1, β̃2 and ν̃ are the estimates under H0.
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2.4.1 Simulation study

In this part of simulation, we approach in two different ways. First, we perform a simulation
to study the behavior of the MLEs of the parameters of the OLLGIG distribution without systematic
structures. Second, we evaluate the behavior of the parameter estimates considering two systematic
structures.

The OLLGIG distribution Some properties of the MLEs are evaluated using a classical
analysis by means of a simulation study. We simulate the OLLGIG distribution as follows:

• Compute the inverse function F−1(·) from the cumulative distribution (2.1).

• Generate u ∼ U(0, 1).

• Apply u in F−1(u) = Q(u) from Equation (2.7).

• The values t = Q(u) are generated from the OLLGIG distribution, where Q(u) is the inverse of
(2.1).

We take n = 20, 50, 150 and 350 for each replication, and then evaluate the estimates µ̂, σ̂, ν̂
and τ̂ . We repeat this process 1, 000 times and then calculate the average estimates (AEs), biases and
means squared errors (MSEs). In the first scenario, we take τ = 0.3662, µ = 5.7915, σ = 0.0658 and
ν = 12.7216. We use the values fitted in the adjustment to the iris data set in Section 2.6 as shown in
the Table 2.4. The estimates of the model parameters are computed using the GAMLSS package in R
software. The results of the Monte Carlo study under maximum likelihood are given in Table 2.1. They
indicate that the MLEs are accurate. Further, the MSEs of the MLEs of the model parameters decay
toward zero when n increases in agreement with first-order asymptotic theory.

Table 2.1. AEs, biases and MSEs for the parameters of the OLLGIG distribution.
scenario 1 scenario 2
n = 20 n = 50

Parameter AE Bias MSE Parameter AE Bias MSE
µ̂ 5.9023 0.1109 0.0895 µ̂ 5.8618 0.0704 0.0231
σ̂ 0.7468 0.6810 2.6764 σ̂ 0.2119 0.1461 0.5443
ν̂ 13.4759 0.7544 66.2484 ν̂ 12.6530 -0.0685 7.2487
τ̂ 1.0945 0.7283 2.2952 τ̂ 0.7115 0.3452 0.4276

scenario 3 scenario 4
n = 150 n = 350

Parameter AE Bias MSE Parameter AE Bias MSE
µ̂ 5.8354 0.0439 0.0039 µ̂ 5.8195 0.0281 0.0014
σ̂ 0.0822 0.0165 0.0004 σ̂ 0.0757 0.0099 0.0001
ν̂ 12.7241 0.0026 0.0097 ν̂ 12.7131 -0.0085 0.0080
τ̂ 0.4822 0.1160 0.0242 τ̂ 0.4363 0.0700 0.0075

The OLLGIG regression model
We examine the performance of the MLEs in the OLLGIG regression model by means of some

simulations with sample sizes n = 100, 300 and 500. We simulate 1, 000 samples from two scenarios
(τ = 0.5 and τ = 1.5) by considering µi = β10 + β11xi and σi = β20 + β21xi. For both cases, we take
ν = 0.53. The explanatory variable is generated by xi ∼ U(0, 1) and the response variable is generated
by yi ∼ OLLGIG(µi, σi, ν, τ). For each fitted model, we compute the AEs, biases and MSEs. Based on
the results given in Table 2.2, we note that the MSEs of the MLEs of β10, β11, β20, β21 and τ decay
toward zero when the sample size n increases, as usually expected under first-order asymptotic theory.
Further, the AEs of the parameters tend to be closer to the true parameter values when n increases.
These facts support that the asymptotic normal distribution provides an adequate approximation to the
finite sample distribution of the estimates.
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Table 2.2. AEs, biases and MSEs for the OLLGIG regression model under scenarios 1 and 2.
scenario 1

n = 100 n = 300 n = 500
Parameter AE Bias MSE AE Bias MSE AE Bias MSE

β10 1.5044 0.0044 0.0028 1.5011 0.0011 0.0008 1.5014 0.0014 0.0005
β11 -0.6979 0.0021 0.0100 -0.6981 0.0019 0.0027 -0.6992 0.0008 0.0017
β20 -1.9426 0.0574 0.1223 -1.9606 0.0394 0.0401 -1.9637 0.0363 0.0280
β21 0.3636 0.0136 0.0508 0.3522 0.0022 0.0162 0.3516 0.0016 0.0093
τ 0.5998 0.0998 0.0763 0.5448 0.0448 0.0228 0.5368 0.0368 0.0149

scenario 2
n = 100 n = 300 n = 500

Parameter AE Bias MSE AE Bias MSE AE Bias MSE
β10 1.4975 -0.0025 0.0005 1.4982 -0.0018 0.0002 1.4986 -0.0014 0.0001
β11 -0.7017 -0.0017 0.0018 -0.7024 -0.0024 0.0005 -0.7025 -0.0025 0.0003
β20 -2.2627 -0.2627 0.1839 -2.1766 -0.1766 0.0872 -2.1548 -0.1548 0.0659
β21 0.3502 0.0002 0.0717 0.3432 -0.0068 0.0247 0.3454 -0.0046 0.0148
τ 1.2052 -0.2948 0.3226 1.2720 -0.2280 0.1720 1.2932 -0.2068 0.1389

2.5 Checking model: Diagnostic and residual analysis

A first tool to perform sensitivity analysis, as stated before, is by means of global influence
starting from case-deletion (Cook, 1977) and Cook and Weisberg (1982). Case-deletion is a common
approach to study the effect of dropping the ith observation from the data set. The case-deletion model
with systematic structures (2.15) is given by

µl = exp(xT
l β1) and σl = exp(xT

l β2), l = 1, 2, . . . , n, l ̸= i. (2.17)

In the following, a quantity with subscript ”(i)”means the original quantity with the ith observation dele-
ted. For model (2.17), the log-likelihood function of θ is denoted by l(i)(θ). Let θ̂(i) = (β̂1

T

(i), β̂2

T

(i), ν̂(i), τ̂(i))
T

be the MLE of θ from l(i)(θ). To assess the influence of the ith observation on the MLEs θ̂ =

(β̂1

T
, β̂2

T
, ν̂, τ̂)T , we can compare the difference between θ̂(i) and θ̂. If deletion of an observation

seriously influences the estimates, more attention should be paid to that observation. Hence, if θ̂(i) is far
from θ̂, then the ith observation can be regarded as influential. A first measure of the global influence is
defined as the standardized norm of θ̂(i) − θ̂ (generalized Cook distance) given by

GDi(θ) = (θ̂(i) − θ̂)T
[
L̈(θ)

]
(θ̂(i) − θ̂).

Another alternative is to assess the values of GDi(β1), GDi(β2) and GDi(ν, τ) since these
values reveal the impact of the ith observation on the estimates of β1, β2 and (ν, τ), respectively. Another
popular measure of the difference between θ̂(i) and θ̂ is the likelihood distance given by

LDi(θ) = 2
{
l(θ̂)− l(θ̂(i))

}
.

Once the model is chosen and fitted, the analysis of the residuals is an efficient way to check
the model adequacy. The residuals also serve to identify the relevance of an additional factor omitted
from the model and verify if there are indications of serious deviance from the distribution considered
for the random error. Further, since the residuals are used to identify discrepancies between the fitted
model and the data set, it is convenient to define residuals that take into account the contribution of
each observation to the goodness-of-fit measure.

In summary, the residuals allow measuring the model fit for each observation and enable
studying whether the differences between the observed and fitted values are due to chance or to a sys-
tematic behavior that can be modeled. The quantile residuals (qrs) (Dunn and Smyth, 1996) for the
OLLGIG regression model with two systematic structures are defined by

qri = Φ−1

{
η(yi)

τ

η(yi)τ + [1− η(yi)]τ

}
, (2.18)
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where η(·) is given in Equation (2.1) and Φ(·)−1 is the inverse cumulative standard normal distribution.
Atkinson (1985) suggested the construction of an envelope to have a better interpretation of the

probability normal plot of the residuals. The simulated confidence bands of the envelope should contain
the residuals. If the model is well-fitted, the majority of points will be within these bands and randomly
distributed. The construction of the confidence bands follows the steps:

• Fit the proposed model and calculate the residuals qri’s;

• Simulate k samples of the response variable using the fitted model;

• Fit the model to each sample and calculate the residuals qrij (j = 1, . . . , k and i = 1, . . . , n);

• Arrange each group of n residuals in rising order to obtain qr(i)j for j = 1, . . . , k and i = 1, . . . , n;

• For each i, calculate the mean, minimum and maximum qr(i)j , namely

qr(i)M =

k∑
j=1

qr(i)j

k
, qr(i)I = min{qr(i)j : 1 ≤ j ≤ k} and qr(i)S = max{qr(i)j : 1 ≤ j ≤ k};

• Include the means, minimum and maximum together with the values of qri against the expected
percentiles of the standard normal distribution.

The minimum and maximum values of the qr′is form the envelope. If the model under study is
correct, the observed values should be inside the bands and distributed randomly.

Simulation study
A simulation study is conducted to investigate the behavior of the empirical distribution of the

qrs for the OLLGIG regression model. We generate 1, 000 samples based on the algorithm presented
in Section 2.4.1. We also give the normal probability plots to assess the degree of deviation from the
normality assumption of the residuals. Based on the plots in Figures 2.3 and 2.4 representing the first
and second scenarios, respectively, we conclude that the empirical distribution of the qrs agrees with
the standard normal distribution in both scenarios. This empirical distribution becomes closer to the
standard normal distribution when n increases in both scenarios.
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Figure 2.3. Normal probability plots for qri in the OLLGIG regression model under scenario 1 (τ = 0.5)
(a) n = 100. (b) n = 300. (c) n = 500.

2.6 Applications

In this section, we provide two applications to real data to prove empirically the flexibility of
the OLLGIG model. The calculations are performed with the R software.



22

(a) (b) (c)

−2 −1 0 1 2

−
0

.0
5

0
.0

0
0

.0
5

N(0,1) quantiles

Q
u

a
n

ti
le

 r
e

s
id

u
a

ls

−3 −2 −1 0 1 2 3

−
0

.0
5

0
.0

0
0

.0
5

N(0,1) quantiles

Q
u

a
n

ti
le

 r
e

s
id

u
a

ls

−3 −2 −1 0 1 2 3

−
0

.0
5

0
.0

0
0

.0
5

0
.1

0

N(0,1) quantiles

Q
u

a
n

ti
le

 r
e

s
id

u
a

ls

Figure 2.4. Normal probability plots for qri in the OLLGIG regression model for scenario 2 (τ = 1.5)
(a) n = 100. (b) n = 300. (c) n = 500.

2.6.1 Application 1: Iris data

In the first application, the OLLGIG distribution is compared with the nested GIG and IG
distributions. The data set is iris, in which it provides measurements in centimeters of the variables
length and width of the septal and length and width of the petal, respectively, for 50 flowers of each
of the 3 iris species (setosa , versicolor and virginica). In this application, the variable septum length
(Sepal.Length) is used. This data set has been analyzed by several authors in multivariate analysis, for
example, Anderson (1935) and Fisher (1936). We show that the distribution for these data presents
bi-modality.

Table 2.3 provides a descriptive summary for these data and indicate positively distorted dis-
tributions with varying degrees of variability, skewness, and kurtosis.

Table 2.3. Descriptive statistics for iris flower data.

Mean Median SD Skewness Kurtosis Min. Max.
5.843 5.800 0.828 0.3086 -0.6058 4.300 7.900

A brief descriptive analysis of the data in Table 2.3 reveals that the average score of the
variable septum length is 5.843, the median value is 5.800, thus indicating that the data has a symmetric
distribution.

In Table 2.4, we report the MLEs of the model parameters and their standard errors (SEs) in
parentheses. We give in Table 2.5 the following goodness-of-fit measures: Akaike Information Criterion
(AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), Hernnan-
Quinn Information Criterion (HIQC), Cramér-von Misses (W ∗), Anderson Darling (A∗) and Kolmogarov-
Smirnov (KS) test statistic. The small values of these measures, the better the fit. The figures in Table
2.5 indicate that the OLLGIG distribution has the lowest values of AIC, CAIC, BIC, HQIC, A∗, W ∗ and
KS among those of the fitted models and therefore it could be chosen as the best model.

Table 2.4. MLEs and SEs (in parentheses) of the model parameters for the iris data.

Model τ µ σ ν
OLLGIG 0.3662 5.7915 0.0658 12.7216

(0.0685) (0.0091) (0.0079) (0.0130)
GIG 1 5.8433 0.1413 0.1000

(-) (0.0674) (0.0082) (72.9562)
IG 1 5.8433 0.0585 -0.5

(-) (0.0674) (0.0034) (-)
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Table 2.5. Goodness-of-fit measures for the iris data.

Model AIC CAIC BIC HQIC A∗ W ∗ KS
OLLGIG 365.0638 365.3397 377.1064 369.9563 0.3474 0.0486 0.0578

GIG 369.8170 369.9814 378.8489 373.4864 0.7242 0.1164 0.0881
IG 367.8134 367.8951 373.8347 370.2597 0.7244 0.1165 0.0881

We consider LR statistics to compare nested models. The OLLGIG distribution includes some
sub-models as mentioned above, thus allowing their evaluations relative to the others and to a more
general model. The values of the LR statistics are listed in Table 2.6. It is evident from the figures
in this table that the OLLGIG distribution outperforms its sub-models according to the values of the
LR statistics. So, it indicates that the OLLGIG model provides a better fit to these data than their
sub-models.

Table 2.6. LR tests for the iris data.

Models Hypotheses Statistic w p-value
OLLGIG vs GIG H0 : τ = 1 vs H1 : H0 is false 6.7532 0.0094
OLLGIG vs IG H0 : τ = 1 and ν = −0.5 vs H1 : H0 is false 6.7496 0.0342

More information is provided by a visual comparison of the histogram of the data and the fitted
density functions and cumulative functions. The plots of the fitted OLLGIG, GIG and IG densities are
displayed in Figure 2.5(a). The estimated OLLGIG density provides the closest fit to the histogram of
the data. In order to assess if the model is appropriate, the plots of the fitted OLLGIG, GIG and IG
cumulative distributions and the empirical cdf are displayed in Figure 2.5(b). They indicate that the
OLLGIG distribution provides a good fit to these data.
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Figure 2.5. (a) Estimated densities of the OLLGIG, GIG and IG models for iris data. (b) Estimated
cumulative functions of the OLLGIG, GIG and IG models and the empirical cdf for iris data.

In Figure 2.6, we note that the iris data has a bi-modality shape, where the GIG and IG
distributions they can not have (see Figure 2.5(a)).

2.6.2 Application 2: Price of urban property data.

Here, we provide a second application of the OLLGIG regression model to evaluation the price
of urban residential properties for sale in the municipality of Paranaíba in the State of Mato Grosso do
Sul (MS) in Brazil. These data collected in 2017 refer to n = 45 houses for sale in the municipality.
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Figure 2.6. Estimated densities of the OLLGIG for iris data.

In the context of real estate appraisal, it is necessary to develop statistical methodologies (characterized
by the scientific accuracy) of residential property prices. Besides this aspect, we can perceive the rare
use of such methodologies by the real estate market. We construct a OLLGIG regression model with
two systematic components to describe the relationship between real estate prices and other explanatory
variables, thus allowing an understanding of the behavior of the price variable (Will M. Bertrand and
Fransoo, 2002) and (Araújo et al., 2012). The response variable and explanatory variables are considered
as follows:

• price of the property yi; this variable was divided by 10, 000;

• area xi1 of land in square meters;

• number of parking spaces xi2 in the residence (0=no vacancy, 1=one vacancy, 2=more than one
vacancy); in this case, two dummy variables, xi21 and xi22, are created;

• number of rooms with suites xi3 in the residence (0=no suites, 1=one suites, 2=more than one
suites); in this case two dummy variables, xi31 and xi32, are created;

• if the residence has a swimming pool xi4 (0=no, 1=yes);

• if the residence is located in the center of the city xi5 (0=no, 1=yes); i = 1, . . . , 45.

In the descriptive analysis of the data from Table 2.7, the mean score of the variable value is
24.98, which is not close to the median value 17.00, thus indicating that the data has an asymmetric
distribution.

Table 2.7. Descriptive analysis of the price of urban property data$.

Mean Median SD Skewness Kurtosis Min. Max.
24.98 17.00 23.9180 3.3330 14.0134 5.50 150.00

We define the OLLGIG regression model by two systematic structures for µ and σ

µi = exp(β10 + β11xi1 + β121xi21 + β122xi22 + β131xi31 + β132xi32 + β14xi4 + β15xi5)

and

σi = exp(β20 + β21xi1 + β221xi21 + β222xi22 + β231xi31 + β232xi32 + β24xi4 + β25xi5), i = 1, . . . , 45.
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We now consider the test of homogeneity of the scale parameter for the price of urban property
data. The LR statistic (see Section 2.4) for testing the null hypothesis H0 : β21 = β221 = β222 = β231 =

β232 = β24 = β25 = 0 is w = 31.98 (p value < 0.0001), which gives a favorable indication toward to the
dispersion not be constant.

In Table 2.8, we present the MLEs, SEs and p-values. The covariates x2, x3 and x5 are
significant at the 5% level in the regression structure for the location parameter µ, whereas the covariates
x1, x3, x4 and x5 are significant (at the same level) for the parameter σ. The figures in this table reveal
hat the covariate x1 is not significant with respect to the parameter µ, but it is significant with respect
to the parameter σ. This is due to a strong dispersion in the response variable. The covariate x2 is
also significant for the number of parking spaces in the structure of µ. The covariate x3 is significant
in the location and scale structure, i.e., there is a significant difference between the residence that does
not have a suite, has a suite or more. The covariate x4 is not significant in relation to the location, but
it is significant in the structure of σ. There is a significant difference in the residence with or without
swimming pool for the dispersion parameter. This fact can also be noted in Figure 2.7(a). The covariate
x5 is significant in relation to both parameters µ and σ, i.e., there is a significant difference between the
residence being in the center of the city and outside the center. This fact can also be noted in Figure
2.7(b).

Table 2.8. MLEs, standard errors (SEs) and p-values for the OLLGIG regression model fitted for the
price of urban property data.

Parameter Estimate SE p-Value
β̂10 7.0690 0.4428 <0.001
β̂11 -0.0005 0.0002 0.0679
β̂121 0.8069 0.2689 0.0057
β̂122 0.8407 0.2677 0.0041
β̂131 -0.8976 0.1945 <0.001
β̂132 0.4326 0.1872 0.0287
β̂14 0.5794 0.6941 0.4111
β̂15 -0.5323 0.1008 <0.001
β̂20 2.614 0.5982 <0.001
β̂21 0.0013 9.961e-05 <0.001
β̂221 -0.2054 0.1316 0.1303
β̂222 -0.1741 0.1223 0.1660
β̂231 0.5139 0.0739 <0.001
β̂232 0.2585 0.1077 0.0235
β̂24 -2.135 0.4818 <0.001
β̂25 0.2575 0.0481 <0.001
ν̂ -0.4942 0.1231 <0.001
τ̂ 12.764 2.436

The AIC, BIC and global deviance (GD) statistics are listed in Table 2.9. We note that the
OLLGIG regression model presents the lowest AIC, BIC and GD values among the other fitted models.
So, there are indications that the OLLGIG model provides a better fit to these data.

Table 2.9. Goodness-of-fit measures for the the price of urban property data.

Model AIC BIC GD
OLLGIG 322.0612 354.5811 286.0612

GIG 348.8190 379.5323 314.8190
IG 333.3241 362.2307 301.3241
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Figure 2.7. Estimated cdf from the fitted OLLGIG regression model and the empirical cdf for the the
price of urban property data. (a) For covariate x4, and (b) For covariate x5.

We adopt again the LR statistics to compare the fitted models in Table 2.10. We reject the null
hypotheses in the two tests in favor of the wider OLLGIG regression model. Rejection is significant at
the 5% level and provides clear evidence of the need of the shape parameter τ when modeling real data.

Table 2.10. LR tests for the the price of urban property data.

Models Hypotheses Statistic w p-value
OLLGIG vs GIG H0 : τ = 1 vs H1 : H0 is false 28.7579 <0.001
OLLGIG vs IG H0 : τ = 1 and ν = −0.5 vs H1 : H0 is false 15.2629 <0.001

We use the R software to compute the LDi(θ) and GDi(θ) measures in the diagnostic analysis
presented in Section 2.5. The results of such influence measures index plots are displayed in Figure 2.8.
These plots indicate that the cases ♯7, ♯43 and ♯45 are possible influential observations.
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Figure 2.8. Index plot for θ: (a) LDi(θ) (likelihood distance) and (b) GDi(θ) (generalized Cook’s
distance).

In addition, Figure 2.9(a) provide plots of the qrs for the fitted model, thus showing that
all observations are in the interval [−3, 3] and a random behavior of the residuals. Hence, there is no
evidence against the current suppositions of the fitted model. In order to detect possible departures
from the distribution errors in model, as well as outliers, we present the normal plot for the qrs with a
generated envelope in Figure 2.9(b). This plot reveals that the OLLGIG regression model is very suitable
for these data, since there are no observations falling outside the envelope. Also, no observation appears
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as a possible outlier.
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Figure 2.9. (a) Index plot of the qrs and (b) normal probability plot with envelope for the qrs from the
fitted OLLGIG regression model fitted to urban property data.

2.7 Concluding Remarks

We present a four-parameter distribution called the odd log-logistic generalized Gaussian inverse
(OLLGIG) distribution, which includes as special cases the generalized Gaussian inverse (GIG) and
inverse Gaussian (IG). We provide some of its mathematical properties. Further, we define the OLLGIG
regression model with two systematic structures based on this new distribution, which is very suitable
for modeling censored and uncensored data. The proposed model serves as an important extension to
several existing regression models and could be a valuable addition to the literature. Some simulation are
performed for different parameter settings and sample sizes. The maximum likelihood method is described
for estimating the model parameters. Diagnostic analysis is presented to assess global influences. We also
discuss the sensitivity of the maximum likelihood estimates from the fitted model via quantile residuals.
The utility of the proposed OLLGIG regression model is demonstrated by means of a real data set for
price data of urban residential properties in the municipality of Paranaíba in the State of Mato Grosso
do Sul, Brazil.
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3 THE SEMIPARAMETRIC REGRESSION MODEL FOR BIMODAL DATA WITH
DIFFERENT PENALIZED SMOOTHERS APPLIED TO CLIMATOLOGY, ETHANOL
AND AIR QUALITY DATA

Abstract: Semiparametric regressions can be used to model data when covariables and the
response variable have a nonlinear relationship. In this work, we propose three flexible regression models
for bimodal data called the additive, additive partial and semiparametric regressions, basing on the odd
log-logistic generalized inverse Gaussian distribution under three types of penalized smoothers, where the
main idea is not to confront the three forms of smoothings, but to show the versatility of the distribution
with three types of penalized smoothers. We present several Monte Carlo simulations carried out for
different configurations of the parameters and some sample sizes to verify the precision of the penalized
maximum likelihood estimators. The usefulness of the proposed regressions is proved empirically through
three applications to climatology, ethanol and air quality data.
Keywords: Additive model; additive partial model; generalized inverse Gaussian distribution; semipara-
metric model; splines.

3.1 Introduction

For many years, the normal linear regression model has been used to explain most random
phenomena. Even when the phenomenon under study does not present a response for which the normality
assumption is reasonable, some types of transformations are suggested to achieve the desired normal
distribution. Another important problem in regression models occurs when there are linear and nonlinear
effects on the response variable in a single data set.

A great effort was undertaken to provide more flexible assumptions so that these regressions
could model real situations with greater precision. However, these flexible assumptions lead to more
complex regression models which are very hard to be interpreted in some cases. Nowadays, the literature
has various types of regression models such as the generalized linear semiparametric models pioneered
by Green and Yandell (1985), where it was added a nonparametric term to the linear predictor. Another
extension of the generalized linear models is the generalized additive model (GAM) introduced by Hastie
and Tibshirani (1990), in which the term that is controlled in parametric form is altered by an arbitrary
function and becomes controlled in nonparametric form, and then it is estimated by smoothed curves
(such as splines). Ruppert et al. (2003) demonstrate that nonparametric regression can be considered
as a relatively simple extension of parametric regression and combine the two together, in what refers
to semiparametric regression, they approach semiparametric regression based on penalized regression
splines and mixed models. Rigby and Stasinopoulos (2005) developed a generalized additive model for
location, scale and shape (GAMLSS), which has been widely used in various areas of science due to
its flexibility, by allowing modeling the location, scale and shape simultaneously. The utility of the
semiparametric regression method in scenarios of real change is of extreme importance. For example,
Fan and Hyndman (2011) proposed a new statistical method to predict short-term electricity demand
based on a semiparametric additive model, Lebotsa et al. (2018) presented an application of partially
linear additive quantile regression models to predict short-term electricity demand using data from South
Africa, Hudson et al. (2010) showed the benefits of the GAMLSS in the modeling and interpretation
of possible nonlinear climate impacts on eucalyptus tree growth, Del Giudice et al. (2015) presented a
hedonic price function constructed through a semiparametric additive model, and more recently, Etienne
et al. (2019) utilized a semiparametric model and stochastic frontier model to estimate the efficiency of
corn production by smallholders in Zimbabwe.

On the other hand, the distributions commonly used in regression models are being modified
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and/or generalized to enable them to model different complex forms of data. Hence, it is convenient to
consider parametric families of distributions that are flexible enough to capture a wide range of symmetric,
asymmetric and bimodal behaviors.

In this article, we adopt as baseline the odd log-logistic generalized inverse Gaussian (OLLGIG)
distribution introduced recently by Souza Vasconcelos et al. (2019). Thus, the fundamental objective is
propose additive, additive partial and semiparametric regression models for bimodal data from in the
OLLGIG distribution with different penalized smoothers.

The inferential component is carried out using the asymptotic distribution of the maximum
likelihood estimators (MLEs). These models are presented with some methods to effect global influence.
Additionally, we develop residual analysis from quantile residuals (qrs). For some parameter settings,
additive terms and sample sizes, diverse Monte Carlo simulations are carried out making comparisonthe
empirical distribution of the qrs with the standard normal distribution. These simulations indicate that
the empirical distribution of these residuals with different penalized smoothers present conformity in
what it refers to standard normal distribution.

The rest of the paper is structured following way. In Section 3.2, the OLLGIG semiparametric
regression model will be defined based on different penalized smoothers, estimate their parameters by
the penalized maximum likelihood method, diagnostic and residual analysis are discussed. In Section 3.3
some properties of the maximum likelihood estimators are evaluated using a simulation study. In Section
3.4, we show empirically how flexible, practical relevance and applicability of the presented regression
models by means of three real data sets. Section 3.5 is devoted to some concluding remarks.

3.2 The OLLGIG semiparametric regression

For modelling OLLGIG distributions, GAMLSS package (Stasinopoulos et al., 2007) available
in R software was used, implementing a new distribution, as described in Section 4.2 in Stasinopoulos
et al. (2008). For the regression analysis we use the function gamlss(·) from the GAMLSS package
(Stasinopoulos et al., 2007), in which the regression structures with the penalized smoothers are described
in Tables 3.5, 3.10 and 3.13.

The inverse Gaussian (IG) and generalized inverse Gaussian (GIG) distributions are highly
applied in various areas of science for example the survival and reliability analysis, meteorology, hydrology
and engineering, among others. Recently, Souza Vasconcelos et al. (2019) defined the general form for
the OLLGIG cdf, is (for y > 0)

F (y) = F (y;µ, σ, ν, τ) =
Gµ,σ,ν(y)

τ

Gµ,σ,ν(y)τ + [1−Gµ,σ,ν(y)]τ
, (3.1)

where

Gµ,σ,ν(y) =

∫ y

0

(
b

µ

)ν
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2Kν(σ−2)
exp
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2σ2

(
b t

µ
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µ

b t

)]
dt (3.2)

where Gµ,σ,ν(y) is the cdf of the GIG distribution, µ > 0 represents the average of the GIG distribution,
σ > 0 is a scale parameter, ν ∈ R and τ > 0 are shape parameters, b = Kν+1(σ

−2)/Kν(σ
−2), and

Kν(t) = 1
2
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0

yν−1 exp
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− 1
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(
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)]
du is the modified Bessel function of the third kind and index

ν. Clearly, Gµ,σ,ν(y) is a special case of (3.1) when τ = 1. Further details and properties of the GIG
distribution can be found in Jørgensen (1982).

We write η(y) = Gµ,σ,ν(y) to simplify the notation. Then, the OLLGIG density function (for
y > 0) can be written as

f(y) = f(y;µ, σ, ν, τ) =

(
b
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)ν
τ yν−1

2Kν (σ−2)
exp

[
− 1

2σ2

(
by

µ
+

µ

b y

)]
×{η(y)[1− η(y)]}τ−1 {η(y)τ + [1− η(y)]τ}−2. (3.3)
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The main properties and motivations of the OLLGIG distribution is that it is more flexible in relation to
asymmetry and kurtosis as well as allowing bi-modality when 0 < τ < 1. If Y is a random variable with
density (3.3), then we write Y ∼ OLLGIG(µ, σ, ν, τ). The OLLGIG distribution contains two important
special cases, the GIG distribution when τ = 1 and the IG distribution when τ = 1, σ = σµ1/2 and
ν = −0.5.

The OLLGIG model is easily simulated, since its quantile function (qf) takes the simple form
y = QGIG

(
u1/τ

u1/τ+[1−u]1/τ

)
, where QGIG(u) = G−1

µ,σ,ν(u) is the qf of the GIG distribution.
In many research areas there are continuous explanatory variables with nonlinear effects in

the response variable and more flexible models under less restrict assumptions are desirable. So, a non-
parametric approach in one or more covariables may be a suitable choice to control the effects of the
continuous covariables, or even to explain nonlinear tendencies of these variables. In this context, we
propose three semiparametric regressions based on the OLLGIG distribution, namely: the OLLGIG
additive regression, the OLLGIG additive partial regression and the OLLGIG semiparametric regression
with different penalized smoothers. The likelihood ratio (LR) statistics can be adopted to discriminate
among the OLLGIG, GIG and IG semiparametric regressions. The penalized likelihood function is used
to fit the OLLGIG semiparametric regression.

Regression analysis involves specifications for the distribution of Yi given a vector of covariables
wi = (wi1, . . . , wip)

T . Let xi = (xi1, . . . , xiJ)
T (for i = 1, . . . , n) be the vector of covariables that has

a nonlinear form with the response variable. The important of the OLLGIG semiparametric regression
defines the parameters depending on wi and xi. The µi parameters are related to covariables by the link
functions:

µi = exp

 J∑
ξ=1

hξ(xiξ)

 → OLLGIG additive regression model; (3.4)

µi = exp
[
wT

i β + h(xiξ)
]

→ OLLGIG additive partial regression model; (3.5)

µi = exp

wT
i β +

J∑
ξ=1

hξ(xiξ)

 → OLLGIG semiparametric regression model, (3.6)

where hξ(·) is the smooth function related to the continuous explanatory variable with non-linear effects
that are non-parametric controlled (for i = 1, . . . , n, ξ = 1, . . . , J) and β = (β1, . . . , βp)

T is the full
parameter vector, note that equations (3.4) and (3.5) are particular cases of equation (3.6).

In this article, we shall discuss two smoothing functions called cubic spline and P-spline in the
systematic structure.

• Cubic spline

The cubic spline is represented by the cs(·) function, which uses the smooth.spline(·) command to
smooth a curve available in the GAMLSS package (Stasinopoulos et al., 2007). Let y1, . . . , yn be n

observations from the OLLGIG(µi, σ, ν, τ) distribution. For the semiparametric models (3.4), (3.5)
and (3.6), the fixed and random effects θ and h, respectively, are estimated by maximizing the
penalized log-likelihood function (see, for instance, Hastie and Tibshirani (1990) and Green and
Silverman (1993)) has the form

lp(θ,h) = l(θ)−
J∑

ξ=1

λξ

2
hT
ξ Kξhξ. (3.7)
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where

l(θ) = n log(τ) + ν

n∑
i=1

log
(

b

µi

)
+ (ν − 1)

n∑
i=1

log(yi)− n log
[
2Kν

(
1

σ2

)]

− 1

2σ2

n∑
i=1

(
b yi
µi

+
µi

b yi

)
+ (τ − 1)

n∑
i=1

log{η(yi)[1− η(yi)]}

−2

n∑
i=1

log{ητ (yi) + [1− η(yi)]
τ}, (3.8)

θ = (βT , σ, ν, τ)T is the parameter vector, λξ > 0 is the smoothing parameter, which characterizes
the smoothness of the curve, i.e., it controls the quality of the curve fitting, for the vector of
smoothed function hξ = (hξ(x1ξ), . . . , hξ(xqξ))

T , where q are the distinct and ordered observations
of the covariable that is controlled in a non-parametric way, with ξ = 1, . . . , J number of covariables
of non-linear effect on yi(i = 1, . . . , n), Kξ = QR−1QT is a q × q definite positive matrix, where Q
is a matrix of order q × (q − 2) and R is a matrix of order (q − 2)× (q − 2). For more details, see
Green and Silverman (1993).

Equation (3.7) is a general form of writing the penalized log-likelihood function of the semipara-
metric regression models.

– If we do not consider the systematic form wT
i β, then Equation (3.7) refers to the penalized

log-likelihood function for the OLLGIG additive regression,

– If ξ = 1, it is the penalized log-likelihood function for the OLLGIG additive partial regression,

– If ξ > 1, it refers to the log-likelihood function for the OLLGIG semiparametric regression.

• P-spline

The other smoothing function used in the paper is called the P-spline (Eilers and Marx, 1996),
which involves penalized splines, more particularly the ps(·) and pb(·) functions. The smoothed
ps(·) function is based on the function of Brian Marx, while the smoothed pb(·) function follows
the function defined by Paul Eilers. We present two main differences the ps(·) and pb(·) functions:

– the ps(·) function does not estimate the smoothing parameter;

– in computational terms the pb(·) function is faster than the ps(·) function.

More details in Stasinopoulos et al. (2017).

The ps(·) and pb(·) functions can be determined from h(x)=Nγ, where N is the incidence matrix
which depends on the covariable x and γ is a parameter vector to be estimated under the matrix
of B-spline bases. Further, these smoothing functions also have a quadratic penalty of the form
λγT Gγ, where G = DT D is a known penalty matrix, λ is the hyperparameter that regulates the
number of smoother steps necessary for adjustment and the matrix D is defined in (3.10).

Given this, the penalized log-likelihood function for θ and γ can be introduced as

lp(θ,γ) = l(θ)− 1

2

J∑
ξ=1

γξ
T Gξ(λξ)γξ, (3.9)

where θ = (βT , σ, ν, τ)T is the vector of parameters, J is the number of smoothers or covariables,
which are controlled in nonparametric form, and γ is a vector of penalization coefficients to be
estimated. The penalty matrix G is defined as G = (Dk)T Dk, where the matrix Dk has order
(q − k)× q, recalling that q is the number of distinct values of the explanatory variables, which is
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controlled nonparametrically. The order to be applied depends on the smoothing of the variability
curve of the data. The penalization standard normally used of order k = 2 can be referred as

γT (D2)T D2γ = (γ1 − 2γ2 + γ3)
2 + . . .+ (γq − 2γq + γq)

2. (3.10)

Thus, the matrix D has the form

D2 =


1 −2 1 0 · · ·
0 1 −2 1 · · ·
0 0 1 −2 · · ·
...

...
...

... . . .

.

The asymptotic distribution of (θ̂ − θ) is multivariate normal Np+3(0,K(θ)−1) under general
regularity conditions, where K(θ) is the expected information matrix. The asymptotic covariance matrix
K(θ)−1 of θ̂ can be approximated by the inverse of the (p + 3) × (p + 3) observed information matrix
J(θ). By doing this, the inference on the parameter vector θ can be based on the multivariate normal
distribution Np+3(0, J(θ)

−1) for θ̂ and then a 100(1 − α∗)% asymptotic confidence interval for any
parameter θq follows as

ACIq =

(
θ̂q − zα∗/2

√
Ĵq,q, θ̂q + zα∗/2

√
Ĵq,q

)
,

where Ĵq,q denotes the qth diagonal element of the inverse of the estimated observed information matrix
J(θ̂)−1 and zα∗/2 is the quantile 1− α∗/2 of the standard normal distribution.

We can use LR statistics for confront with some models embedded with the OLLGIG semipa-
rametric regression model.

3.2.1 Diagnostic tools and residual analysis

In order to assess possible influential points, an analysis of global influence may be carried
from case-deletion. The case-deletion regressions with systematic components (3.4), (3.5) and (3.6)
can be expressed as µl = exp

[∑J
ξ hξ(xlξ)

]
, µl = exp

[
wT

l β + h(xl)
]
and µl = exp

[
wT

l β +
∑J

ξ hξ(xlξ)
]

respectively, for ξ = 1, . . . , J, l = 1, . . . , n, l ̸= i. The standardized norm of θ̂(i) − θ̂, called the
generalized Cook distance, is the first measure of the global influence defined by GDi(θ) = (θ̂(i) −
θ̂)T

[
L̈(θ)

]
(θ̂(i) − θ̂), where a quantity with subscript “(i)” means the original quantity with the ith

observation deleted Another popular measure of the difference between θ̂(i) and θ̂ is the likelihood distance
defined by LDi(θ) = 2[l(θ̂)− l(θ̂(i))].

Once the model is chosen and fitted, the analysis of the residuals is an efficient way to check
the model adequacy. For a residual analysis, we suggest working with the quantile residual (Dunn and
Smyth, 1996). The qrs for the OLLGIG semiparametric regression with systematic component take the
forms

qri = Φ−1

{
η(yi)

τ

η(yi)τ + [1− η(yi)]τ

}
, (3.11)

where η(·) is given in Equation (3.2) and Φ−1(·) is the inverse of the standard normal cdf. Atkinson (1982)
suggested the construction of an envelope to have a better interpretation of the probability normal plot
of the residuals.
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3.3 Simulation study using different penalized smoothers

To verify the accuracy of the OLLGIG semiparametric regression MLEs with different penalties,
a simulation study was performed, and also to explore the accuracy of the performance of the empirical dis-
tribution of the qrs. The response and the covariables are generated as follow: yi ∼ OLLGIG(µi, σ, ν, τ),
wi1 ∼ Normal(0, 1), wi2 ∼ Binomial(1, 0.5) and xi3 ∼ Uniform(0, 7).

In this case, only the coefficients associated with the explanatory variables w1 and w2 will be
analyzed, since the coefficient associated with the penalized smoothers does not have a direct explanation.
Then, a graphical analysis is performed, where each of the plots presents true smooth curve defined by
h(xi3) = [1 + sin(xi3)]. We consider different sample sizes (n = 50, 100, and 250) under three scenarios
cs(·), ps(·) and pb(·) considering that the systematic component of the regression is µi = 0.01wi1−wi2+

[1 + sin(xi3)]. When n increases, the adjusted curves approach the actual curve (as expected).
For these scenarios, the numeric values of the parameters are taken as: β1 = 0.01, β2 = −1,

σ = 1.5, ν = 6 and τ = 0.8. Thus, for each combination of n, β1 and β2, 1, 000 Monte Carlo simulations
are generated and for each of the samples the MLEs of the model parameters are estimated. For each
replication, we evaluate the MLEs of the parameters and then, after all replications, we compute the
average estimates (AEs), biases and means squared errors (MSEs). Table 3.1 provides the different
systematic components for the parameter µ.

Table 3.1. Systematic components for the parameters.

Regression Penalized smoothers Systematic components
cs(·) µi = exp[β1wi1 + β2wi2 + cs(xi3)]

OLLGIG ps(·) µi = exp[β1wi1 + β2wi2 + ps(xi3)]
pb(·) µi = exp[β1wi1 + β2wi2 + pb(xi3)]

From Table 3.2 you can see that the parameter EAs approach the parameters true value when
n increases. Further, the biases and MSEs are small for the estimates of β1 and β2 even when n is small
which supports that the asymptotic normal distribution provides an adequate approximation to the finite
sample distribution of the MLEs.

Table 3.2. AEs, biases and MSEs for the fitted OLLGIG regression with penalized smoothers under
scenarios 1[cs(·)], 2[ps(·)] and 3[pb(·)].

scenario 1
n = 50 n = 100 n = 250

Parameters AE Bias MSE AE Bias MSE AE Bias MSE
β1 0.0104 0.0004 0.0052 0.0085 -0.0015 0.0023 0.0100 0.0000 0.0009
β2 -0.9924 0.0076 0.0200 -0.9969 0.0031 0.0087 -1.0033 -0.0033 0.0035

scenario 2
n = 50 n = 100 n = 250

Parameters AE Bias MSE AE Bias MSE AE Bias MSE
β1 0.0102 0.0002 0.0051 0.0085 -0.0015 0.0022 0.0090 -0.0010 0.0009
β2 -0.9900 0.0100 0.0199 -0.9972 0.0028 0.0089 -1.0031 -0.0031 0.0034

scenario 3
n = 50 n = 100 n = 250

Parameters AE Bias MSE AE Bias MSE AE Bias MSE
β1 0.0081 -0.0019 0.0053 0.0066 -0.0034 0.0022 0.0095 -0.0005 0.0009
β2 -1.0068 -0.0068 0.0194 -0.9974 0.0026 0.0093 -0.9988 0.0012 0.0037

In Figure 3.1, we plot the adjusted and generated terms for the smooth functions representing
the first, second and third scenarios with penalized smoothers cs(·), ps(·) and pb(·), respectively. For all
scenarios, the generated smooth functions approximate the true curve when the sample size increases.
Thus, we can conclude that the variability among the non-parametric function estimates is reduced when
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n increases. We can also note that the three smoothing functions have similar performances, i.e., we can
not say that anyone is better than the others. Finally, we suggest readers always to work with the three
soothing functions. This same procedure is adopted in the various examples in Section 3.4 using some
goodness-of-fit statistics to choose one of the three smoothing functions.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.1. The fitted and generated terms for the smooth functions based on 1,000 simulations. The
first three plots (a) n = 50, (b) n = 100 and (c) n = 250 are related to the scenario (1) with penalized
smoother cs(·). The middle three plots (d) n = 50, (e) n = 100 and (f) n = 250 refer to the scenario (2)
with penalized smoother ps(·). The last three plots (g) n = 50, (h) n = 100 and (i) n = 250 are related
to the scenario (3) with penalized smoother pb(·).

Empirical distribution of the residuals
We have implemented a simulation study to study the empirical distribution of (qr′is) for the

OLLGIG semiparametric regression model. The simulation algorithm follows the same patterns as des-
cribed at the beginning of this section. We also construct the normal probability plots to assess the
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degree of deviation from the normality hypothesis for the residuals. Based on the plots in Figure 3.2
representing the first, second and third scenarios, respectively, we note that the empirical distribution of
these residuals agrees with the standard normal distribution for all scenarios.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.2. Normal probability plots for the qrs. The first three plots (a) n = 50, (b) n = 100 and (c)
n = 250 are related to the scenario (1) with penalized smoother cs(·). The middle three plots (d) n = 50,
(e) n = 100 and (f) n = 250 refer to the scenario (2) with penalized smoother ps(·). The last three plots
(g) n = 50, (h) n = 100 and (i) n = 250 are related to the scenario (3) with penalized smoother pb(·).

3.4 Applications

In this section, we present three real data applications to prove empirically the flexibility of the
OLLGIG additive, additive partial and semiparametric regressions with different penalized smoothers.
All the computational works were implemented in the R software.
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3.4.1 OLLGIG additive regression to climatology data

The first application is about the climatology data from the Department of Biosystems En-
gineering of the Luiz de Queiroz School of Agriculture, University of São Paulo (LEB-ESALQ-USP).
The current data set is available at the link http://www.leb.esalq.usp.br/leb/anos.html. This data
set was collected from March 8 to August 8, 2019. We consider the OLLGIG additive regression to
explore the influence of the covariables (global radiation, relative humidity and maximum wind) in the
evaporation (response variable). Then, the variables considered for this application are:

• yi: Evaporation (mm);

• xi1: Global radiation (cal/cm2);

• xi2: Relative humidity (%);

• xi3: Maximum wind (m/s), for i = 1, . . . , 154.

In Table 3.3 the MLEs are shown, their standard errors (SEs) in parentheses, the values of the
Akaike information criterion (AIC) and global deviation (GD). The fitted model is better suited when
the values of these criteria are small. The lower values of the two statistics in this table support that the
OLLGIG distribution would be right for modeling these data.

Table 3.3. MLEs and SEs of the model parameters for climatology data.

Model log(µ) log(σ) ν τ AIC GD
OLLGIG 1.2780 -1.9504 27.8990 0.2875 482.7119 474.7119

(0.0226) (0.0554) (9.8170) (0.0193)
GIG 1.3176 -1.0429 3.3460 1 491.1583 487.1583

(0.0269) (0.1295) (5.3590) (-)
IG 1.3178 -1.7319 -0.5 1 492.6715 486.6715

(0.0276) (0.0569) (-) (-)

The proposed distribution is associate with two sub-models using LR statistics in Table 3.4.
The figures in this table, specially the p-values, reveal that the OLLGIG model gives a better fit to these
data than its two sub-models. Plots of the fitted OLLGIG, GIG and IG densities are displayed in Figure
3.3(b) to assess the appropriateness of the models. Plots of the estimated cumulative and the empirical
distributions are exposed in Figure 3.3(c). They reveal that the OLLGIG distribution offers a efficient
fit to the current data, thus capturing a slight bimodality with left asymmetry.

Table 3.4. LR tests for climatology data.

Models Hypotheses Statistic w p-value
OLLGIG vs GIG H0 : τ = 1 vs H1 : H0 is false 11.9596 0.0005
OLLGIG vs IG H0 : τ = 1 and ν = −0.5 vs H1 : H0 is false 12.4464 0.0019

Regression analysis with systematic components
We note in Figure 3.4 that there is a nonlinear relationship between the response variable and

each of the covariables x1, x2 and x3. Thus, the OLLGIG additive regression model is a good option
for modeling these data. The systematic components for the parameter µ in Table 3.5 represent the
OLLGIG, GIG and IG additive regressions with penalized smoothers for the explanatory variables x1, x2

and x3. The generalized Akaike information criterion (GAIC) measure is adopted for model selection
(Rigby and Stasinopoulos, 2005) because smoothing terms are included in the systematic components.
The measures of this statistic are displayed in Table 3.5 to verify the adequacy of all fitted models. They
show that the fitted OLLGIG additive regression with pb(·) smoother has the lowest measure for the
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Figure 3.3. (a) Histogram of the evaporation variable. (b) Estimated OLLGIG, GIG and IG densities
for climatology data. (c) Estimated cdf of the OLLGIG, GIG and IG distributions and the empirical cdf.

(a) (b) (c)

2

4

6

200 400 600
xi1

y
i

2

4

6

60 70 80 90
xi2

y
i

2

4

6

4 8 12 16
xi3

y
i

Figure 3.4. Dispersion diagrams for climatology data. (a) y versus x1. (a) y versus x2. (a) y versus x3.

Table 3.5. Systematic components of the OLLGIG, GIG and IG additive regressions and goodness-of-fit
measures for climatology data.

Model systematic structures GAIC
OLLGIG µi = exp[β0 + cs(xi1) + cs(xi2) + cs(xi3)] 402.3305

GIG µi = exp[β0 + cs(xi1) + cs(xi2) + cs(xi3)] 407.7017
IG µi = exp[β0 + cs(xi1) + cs(xi2) + cs(xi3)] 413.6021

OLLGIG µi = exp[β0 + ps(xi1) + ps(xi2) + ps(xi3)] 408.9545
GIG µi = exp[β0 + ps(xi1) + ps(xi2) + ps(xi3)] 413.9161
IG µi = exp[β0 + ps(xi1) + ps(xi2) + ps(xi3)] 419.9604

OLLGIG µi = exp[β0 + pb(xi1) + pb(xi2) + pb(xi3)] 401.8478
GIG µi = exp[β0 + pb(xi1) + pb(xi2) + pb(xi3)] 405.1313
IG µi = exp[β0 + pb(xi1) + pb(xi2) + pb(xi3)] 410.8665

GAIC statistic among the fitted regressions. The MLEs of the model parameters listed in Table 3.6
are evaluated. Additional interpretations for this regression will be made at the end of this subsection.
Table 3.7 compares the proposed distribution with two sub-models via LR statistics, where the p-values
support that the OLLGIG additive regression with pb(·) provides a conducive fit to the current data than
the null models. It was calculated the case-deletion measures GDi(θ) and LDi(θ) defined in Subsection
3.2.1. The results of such influence measure index plots are presented in Figure 3.5. The plots reveal that
the cases ♯61, ♯89, ♯122 and ♯146 are possible influential observations. We perform the residual analysis
by plotting in Figure 3.5(c) the qrs (see Subsection 3.2.1) against the index of the observations. Figure
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Table 3.6. MLEs, SEs and p-values for the OLLGIG additive regression with pb(·) fitted to climatology
data.

Parameter Estimate SE p-value
β0 -0.2576 0.1694 0.1305

log(σ) 0.0169 0.2495
ν 0.4622 0.4266
τ 4.3021 0.6548

Table 3.7. LR tests for comparing regressions.

Regressions Hypotheses Statistic w p-value
OLLGIG pb(·) vs GIG pb(·) H0 : τ = 1 vs H1 : H0 is false 6.0701 0.0244
OLLGIG pb(·) vs IG pb(·) H0 : τ = 1 and ν = −0.5 vs H1 : H0 is false 14.6503 0.0018
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Figure 3.5. Index plots for θ: (a) LDi(θ) (likelihood distance) and (b) GDi(θ) (generalized Cook’s
distance). (c) Residual analysis of the OLLGIG additive regression with pb(·) smoother fitted to the
climatology data. (d) Normal probability plot for the qrs with envelope.

3.5(d) gives the normal probability plot with generated envelope. So, the OLLGIG additive regression
with pb(·) it is very appropriate for this data, although it has three observations out of the envelope, yet
the percentage is less than 5%.

Final interpretations
Figure 3.6 shows the estimation of the nonlinear effects. The horizontal axis in Figure 3.6(a)

refers to the values of the covariable x1 and the vertical axis gives the contribution of the penalized
smoother pb(·) for the adjusted values of the response variable (evaporation in mm). Note that the
global radiation has a nonlinear relation with evaporation, such that:

• for days with global radiation (x1) of up to 300 cal/cm2 (approximately), there is an increase in
evaporation;

• for days with global radiation between 300 cal/cm2 and 380 cal/cm2, there is a reduction of the
evaporation;

• for global radiation values near 380 cal/cm2, the evaporation is increasing.

The effect of humidity (in %) also has a nonlinear effect to the evaporation [see Figure 3.6(b)]. Further,
for days having relative humidity (x2) up to 70% (approximately), there is constant evaporation, but for
days with relative humidity greater than 70% (approximately), the evaporation increases. Further, the
maximum wind speed (covariable x3) has a nonlinear effect on evaporation. For days with maximum
wind speed between 2 m/s and 10 m/s (approximately), there is a rising evaporation rate, while on days
with wind speeds greater than 10 m/s (approximately), the increase of evaporation is less pronounced,
as can be noted in Figure 3.6(c).
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Figure 3.6. Shapes of the penalized smoothers pb(·) for the covariables (a) x1, (b) x2 and (c) x3 using
the OLLGIG additive regression.

3.4.2 OLLGIG additive partial regression fitted to ethanol data

This application is about the fuel ethanol burned in one cylinder engine. For various configura-
tions of compression ratio and engine equivalency, nitrogen oxides (NOx) emissions were recorded. The
ethanol data frame contains 88 sets of measurements for variables from an experiment in which ethanol
was burned in a single cylinder automobile test engine. For more details about the data, see Brinkman
(1981). We consider the OLLGIG additive partial regression given in Equation (3.5) in comparison to the
GIG and IG additive partial regressions with three types of penalized smoothers in the linear predictor,
namely: cs(·), ps(·) and pb(·).

The variables in this study are:

• yi: NOx (concentration of nitrogen oxides (NO and NO2) in micrograms/J);

• wi1: the compression ratio of the engine;

• xi2: equivalence ratio, a measure of the richness of the air and ethanol fuel mixture (for i =

1, . . . , 88).

Table 3.8 lists the MLEs of the parameters, their SEs and the AIC and GD measures for the
OLLGIG, GIG and IG distributions. The statistics in this table reveal that the OLLGIG distribution
presents the lowest values among those of all fitted distributions. So, it could be designated as the best
distribution for current data.

Table 3.8. MLEs and SEs (in parentheses) of the model parameters for ethanol data.

Model log(µ) log(σ) ν τ AIC GD
OLLGIG 0.5341 -1.1017 22.8500 0.1951 250.8621 242.8621

(0.0662) (0.9342) (9.8800) (0.0656)
GIG 0.6717 -0.1787 1.7900 1 262.7169 256.7169

(0.0678) (0.2475) (1.0310) (-)
IG 0.6716 -0.6436 -0.5 1 265.1399 261.1399

(0.0783) (0.0754) (-) (-)

The LR statistics to confront nested distributions are reported in Table 3.9. Clearly, the
OLLGIG distribution outperforms the GIG and IG distributions. The plots of the fitted OLLGIG, GIG
and IG densities are exposed in Figure 3.7(a). It is clear that the histogram of the data has a bimodal
shape and that the estimated OLLGIG density provides the plus approximate fit to the histogram. The
plots for the GIG and IG densities can not have this shape. Further, the plots of the fitted OLLGIG,
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Table 3.9. LR tests for ethanol data

Models Hypothesis Statistic w p-value
OLLGIG vs GIG H0 : τ = 1 vs H1 : H0 is false 13.8548 <0.001
OLLGIG vs IG H0 : τ = 1 and ν = −0.5 vs H1 : H0 is false 18.2778 <0.001

GIG and IG cdf and the empirical cdf are exposed in Figure 3.7(b). They also pointing that the wider
distribution features a appropriate fit to these data. Thus, the OLLGIG distribution is a good choice for
modeling the current data.
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Figure 3.7. (a) Estimated OLLGIG, GIG and IG densities for ethanol data. (b) Estimated cumulative
functions of the OLLGIG, GIG and IG distributions and the empirical cdf for ethanol data. (c) Scatter
diagram: emission of NOx versus air/ethanol mix.

Regression analysis with systematic components
We can note from Figure 3.7(c) that there is a nonlinear effect between the response variable

y and the explanatory variable x2. So, we adopt the OLLGIG additive partial regression with different
penalized smoothers. For the OLLGIG, GIG and IG additive partial regressions, the systematic compo-
nents for the parameter µ by taking the nonlinear effect in the explanatory variable x2 are given in Table
3.10. The values of the GAIC statistic for the nine fitted regressions are reported in Table 3.10. Based

Table 3.10. Additive partial regressions and GAIC for some regressions fitted to the ethanol data.

Model systematic structures GAIC
OLLGIG µi = exp[β0 + β1wi1 + cs(xi2)] 36.2462

GIG µi = exp[β0 + β1wi1 + cs(xi2)] 39.4854
IG µi = exp[β0 + β1wi1 + cs(xi2)] 91.4063

OLLGIG µi = exp[β0 + β1wi1 + ps(xi2)] 39.3340
GIG µi = exp[β0 + β1wi1 + ps(xi2)] 41.0862
IG µi = exp[β0 + β1wi1 + ps(xi2)] 92.2585

OLLGIG µi = exp[β0 + β1wi1 + pb(xi2)] 35.0047
GIG µi = exp[β0 + β1wi1 + pb(xi2)] 37.6757
IG µi = exp[β0 + β1wi1 + pb(xi2)] 91.0999

on these numerical results, the GAIC measure for the OLLGIG additive partial regression with penalized
smoother pb(·) is the smallest among those of the nine fitted regressions. Hence, the proposed regression
can be chosen as the best model for the current data.

Table 3.11 gives the MLEs, SEs and p-values of the model parameters. We can note that
the linear (w1) and non-linear (x2) effects are statistically significant at 5%. Thus, an interpretation
of the linear effect is that, as the compression ratio of the motor increases, so does the NOx emission.
The interpretation of the non-linear effect is addressed at the end of this application. For comparing the
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Table 3.11. MLEs, SEs and p-values for the OLLGIG additive partial regression with pb(·) fitted to
ethanol data.

Parameter Estimate SE p-value
β0 -1.3744 0.0791 <0.001
β1 0.0261 0.0041 <0.001

log(σ) 20.3111 0.0051
ν 4.4625 0.5352
τ 3.3840 0.2694

regressions, we consider LR statistics and formal tests. The values of the LR statistics for testing two sub-
models of the OLLGIG additive partial regression are given in Table 3.12. These values yield favorable
indications for the OLLGIG additive partial regression with pb(·) penalized smoother. The case-deletion

Table 3.12. LR statistics for testing some regressions.

Models Hypotheses Statistic w p-value
OLLGIG pb vs GIG pb H0 : τ = 1 vs H1 : H0 is false 4.2999 0.0281
OLLGIG pb vs IG pb H0 : τ = 1 and ν = −0.5 vs H1 : H0 is false 60.7959 <0.001

measures GDi(θ) and LDi(θ) are presented in the plots of Figure 3.8(a) and 3.8(b), which show that
the cases ♯14, ♯24, ♯38 and ♯88 are likely influential observations. The plot of the qrs versus adjusted
values is given in Figure 3.8(c) for detecting possible outliers in the OLLGIG additive partial regression
with pb(·) smoother. We note that the residuals have a random behavior and there is no observation
outside the range [−3, 3]. Figure 3.8(d) displays the normal probability plot for the qrs with the simulated
envelope, which shows the good adequacy of the fitted regression. Finally, is presented the estimation of
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Figure 3.8. (a) LDi(θ) (likelihood distance). (b) GDi(θ) (generalized Cook’s distance).(c) Residual
analysis of the OLLGIG additive partial regression with pb(·) smoother fitted to the ethanol data. (d)
Normal probability plot for the qrs with envelope. (e) Shape of the penalized smoothers pb(·) for the
covariable x2.

the nonlinear effect in Figure 3.8(e). In the horizontal axis, we have the values of the covariant x2 and
in the vertical axis the contribution of the penalized smoother pb(·) to the adjusted values of the NOx
emission. The effect of the air/ethanol mix is nonlinear in relation to the NOx emission (as expected).
Further, for values of x2 around 0.9, there is an increase in NOx emission which also presents a greater
variability, but from 0.9, the equivalence ratio x2 decreases with little variability of NOx emission.

3.4.3 OLLGIG semiparametric regression fitted to air quality data

The application refers to the air quality data (airquality) available in the R software. For this
analysis, the lines with missing information were omitted. The data are the daily air quality readings
(from May 1 to September 30, 1973) obtained from the New York State, Department of Environmental
Conservation (ozone data) and the U.S. National Weather Service (meteorological data) (more details see
Tukey (1983)). In this application, is it used the OLLGIG semiparametric regression and compare it with
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the GIG and IG sub-models, where the systematic component is given in Equation (3.6) to describe the
relation between the air quality and the other covariables. We also consider (as in the first application)
the penalized smoothers cs(·), ps(·) and pb(·) in the linear predictors. The data are:

• yi: average ozone concentration in parts per billion from 1:00 to 3:00 p.m. on Roosevelt Island;

• wi1: the explanatory variable month, considered as a factor with five levels (May, June, July, August
and September);

• xi2: solar radiation in Langleys in the frequency range from 4000-7700 Angstroms from 8:00 a.m.
to 12:00 noon in Central Park;

• xi3: maximum daily temperature in degrees Fahrenheit at La Guardia Airport, i = 1, . . . , 111. .

Figure 3.9 shows that there is a nonlinear relationship between the response variable and each of the
covariables x2 and x3. Then, we adopt the OLLGIG semiparametric regression with different penalized
smoothers to analyze these data. Table 3.13 presents the OLLGIG, GIG and IG semiparametric regres-
sions with different systematic components with nonlinear effects in the explanatory variables x2 and x3.
The values of the GAIC measure for the nine fitted regressions are listed in Table 3.13. The OLLGIG
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Figure 3.9. Scatter diagram: (a) yi versus xi2. (b) yi versus xi3.

Table 3.13. Semiparametric Regressions and GAIC statistic from the fitted regressions to the air quality
data.

Model systematic components GAIC
OLLGIG µi = exp[β0 + β1wi1 + cs(xi2) + cs(xi3)] 936.3173

GIG µi = exp[β0 + β1wi1 + cs(xi2) + cs(xi3)] 940.2850
IG µi = exp[β0 + β1wi1 + cs(xi2) + cs(xi3)] 1019.6003

OLLGIG µi = exp[β0 + β1wi1 + ps(xi2) + ps(xi3)] 934.7905
GIG µi = exp[β0 + β1wi1 + ps(xi2) + ps(xi3)] 939.3618
IG µi = exp[β0 + β1wi1 + ps(xi2) + ps(xi3)] 1017.3683

OLLGIG µi = exp[β0 + β1wi1 + pb(xi2) + pb(xi3)] 941.1109
GIG µi = exp[β0 + β1wi1 + pb(xi2) + pb(xi3)] 941.7588
IG µi = exp[β0 + β1wi1 + pb(xi2) + pb(xi3)] 1018.3338

semiparametric regression with ps(·) smoother has the smallest GAIC among those of the nine fitted
regressions, and then it can be indicated as the best model. Table 3.14 gives the MLEs, SEs and p-values
of the model parameters. For the 5% significant level, the explanatory variable w1 is significant. Since the
values of the estimates are negative, there is a strong evidence in June and September and a beginning
of a lower average level of ozone in May. The values of the LR statistics for testing two sub-models of
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Table 3.14. MLEs, SEs and p-values for the fitted semiparametric OLLGIG regression with ps(·) to the
air quality data.

Parameter Estimate SE p-value
β0 -0.6978 0.5333 0.1938
β11 -0.3783 0.1737 0.0318
β12 -0.1439 0.1715 0.4033
β13 -0.1056 0.1716 0.5395
β14 -0.3329 0.1418 0.0209

log(σ) 3.7104 0.3348
ν 0.2315 0.0251
τ 6.9203 0.4931

the OLLGIG semiparametric regression with the ps(·) smoother are reported in Table 3.15, which yield
favorable indications for the wider semiparametric regression. Generalized Cook’s distance GDi(θ) and

Table 3.15. LR tests for some semiparametric regressions.

Models Hypotheses Statistic w p-value
OLLGIG ps vs GIG ps H0 : τ = 1 vs H1 : H0 is false 6.5713 0.0104
OLLGIG ps vs IG ps H0 : τ = 1 and ν = −0.5 vs H1 : H0 is false 86.5778 <0.001

likelihood distance LDi(θ) are displayed in Figure 3.10. These plots show that the cases ♯23 and ♯77 are
possible influential observations. On the other hand, the plot of the qrs versus the fitted is explicit in
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Figure 3.10. Index plots for θ: (a) LDi(θ) (likelihood distance) and (b) GDi(θ) (generalized Cook’s
distance). (c) Residual analysis of the fitted OLLGIG semiparamteric regression to the current data. (d)
Normal probability plot for the qrs with envelope.

Figure 3.10(c). It is clear a random performance of the residuals around the x-axis and that the obser-
vation ♯17 is outside the range [−3, 3]. We verify the quality of the adjustment range of the OLLGIG
semiparametric regression by the normal probability plot for the rqs with the simulated envelope given in
Figure 3.10(d). This plot supports the good fit of the OLLGIG semiparametric regression with ps(·) to
the current data. The values of the covariables x2 and x3 are expressed in the horizontal axis of Figure
3.11 and the contribution of the penalized smoother ps(·) in each of these covariables in the vertical axis.
We note that the effects of solar radiation and temperature are nonlinear as expected. We have two
conclusions:

• The penalized smoother for x2 as noted in Figure 3.11(a) presents an increasing period of median
ozone incidence and the decay of the adjusted curve from 240 (approximately). In relation to
the variability remained constant, only above the level of solar radiation around 300 occurred an
increase in the variability of the median incidence of ozone.

• The functional form of the covariable x3 in Figure 3.11(b) shows a continuous increase in the median
incidence of ozone in relation to the temperature up to around 95 degrees Fahrenheit, thus tending
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to decrease the adjusted curve. Further, there is a considerable increase in the variability of median
ozone incidence when the temperature is above 95 degrees Fahrenheit.
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Figure 3.11. Shapes of the penalized smoothers ps(·) for the covariables x2 and x3 via the OLLGIG
semiparametic regression model.

3.5 Concluding Remarks

This paper presents the additive, partial additive and semiparametric regression models under a
distribution, called the odd log-logistic generalized inverse Gaussian (OLLGIG), which are very flexible for
both unimodal and bimodal data. The proposed regressions include as embedded models the generalized
inverse Gaussian and inverse Gaussian regressions in addition to the systematic components with three
types of penalized smoothers. The proposed regressions extend some existing additive, additive partial
and semiparametric regressions and they can be valuable additions for search line in regression models
and extensions. The maximum penalized likelihood method is detailed to estimate the model parameters.
The sensitivity of penalized maximum likelihood estimates of adjusted regressions using quantile residuals
was also discussed. The versatility of the proposed regressions is proved empirically by through of three
applications to climatology, ethanol and air quality data.
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4 A RANDOM EFFECT REGRESSION BASED ON THE ODD LOG-LOGISTIC
GENERALIZED INVERSE GAUSSIAN DISTRIBUTION

Abstract: A random effect regression is defined to model correlated data. The maximum
likelihood is adopted to estimate the parameters and various simulations are performed for correlated
data. A type of residuals for the new regression is proposed whose empirical distribution is close to
normal. The usefulness of the regression is verified based on the average price per hectare of bare land
in 10 cities in the state of São Paulo (Brazil).
Keywords: Bimodal data; generalized inverse Gaussian; hectare price data; regression model; simulation
study.

4.1 Introduction

Many studies in the fields of public health, economics, agronomy, medicine, biology and the
social sciences, among others, involve repeated observations of a response variable. The expression “repe-
ated measures” is used to designate measures obtained for the same variable or in the same experimental
unit on more than one occasion; see Diggle (1988); Crowder and Hand (1990). Various experimental
designs with repeated measures are common, such as split-plot, crossover and longitudinal. These ty-
pes of investigations are referred to as correlated data studies, and they play a fundamental role in the
analysis of results where it is possible to characterize alterations in the characteristics of an individual
by associating these variations with a set of covariables. Due to their nature the repeated measures have
a correlation structure that plays an important role in the analysis of these types of data. Besides, the
distribution of the response variable can present asymmetry or bimodality.

Recently, some works in this area were developed. For example, Muniz-Terrera et al. (2016)
developed random effect parametric and nonparametric regressions for analyze cognitive test data, Coupé
(2018) reported advances in statistical modeling in linguistics based in linear mixed-effects regressions,
Ho et al. (2019) presented an analysis of microbiome relative abundance data using a zero-inflated beta
GAMLSS and meta-analysis across studies using random effects models, Hashimoto et al. (2019) introdu-
ced a random effect log-Burr XII regression and Dirmeier et al. (2020) presented host factor prioritization
for pan-viral genetic perturbation screens using random intercept models and network propagation.

Figure 4.1 display the average price per hectare of bare land in 10 cities in the state of São
Paulo, Brazil, where bare land consists of the soil and its surface with the respective vegetation, such as
forest or pasture. These data were obtained from the website of the Institute of Agricultural Economics
(IEA) and the Office to Coordinate Integral Technical Assistance (CATI) referring to 2015. In this case,
each city is interpreted as a group, and the data within each city are correlated, while between cities they
are considered independent.

So, to analyze correlated data in the presence of bimodality and asymmetry, and based on the
studies described, it is introduced a regression with normal random intercepts based on the odd log-logistic
generalized inverse Gaussian (OLLGIG) distribution for the purpose of considering the possible presence
of heterogeneity among the cities.

The remainder of this paper is divided into four sections. In Section 4.2, the random effect
OLLGIG regression is defined. In Section 4.3, the maximum likelihood estimators (MLEs) are obtained
via numerical integration method, some simulations are performed and the quantile residuals are defined.
In Section 4.4, a real data set is analyzed for illustrative purposes. Finally, some conclusions are offered
in Section 4.5.
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Figure 4.1. Histograma of the average price per hectare of raw land.

4.2 The random effect OLLGIG regression

Many generalized inverse Gaussian (IG) distributions aim to provide better fits to certain
data sets than the traditional two or three parameter IG models. The generalized inverse Gaussian
(GIG) distribution with three parameters (Jørgensen, 1982) presents several properties and applications
of this distribution. Good properties and being more flexible, the GIG distribution still did not have the
appropriateness to model bimodal data. In this context, Souza Vasconcelos et al. (2019) introduced a new
generalization of the GIG distribution called the odd log-logistic generalized inverse Gaussian (OLLGIG)
distribution with four parameters. The most important feature of this OLLGIG distribution is that it
can model bimodal data.

The cumulative distribution function (cdf) of the OLLGIG model is

F (y) = F (y;µ, σ, ν, τ) =
Gµ,σ,ν(y)

τ

Gµ,σ,ν(y)τ + [1−Gµ,σ,ν(y)]τ
, y > 0, (4.1)

where

Gµ,σ,ν(y) =

∫ y

0

(
b

µ

)ν
tν−1

2Kν(σ−2)
exp

[
− 1

2σ2

(
b t

µ
+

µ

b t

)]
dt (4.2)

is the cdf of the GIG distribution, µ > 0 represents its mean, σ > 0 is a scale parameter, and ν ∈ R and
τ > 0 are shape parameters,

b =
Kν+1(σ

−2)

Kν(σ−2)
and Kν(t) =

1

2

∫ ∞

0

yν−1 exp
[
−1

2
t
(
u+ u−1

)]
du (4.3)

is the modified Bessel function of the third kind and index ν. Clearly, Gµ,σ,ν(y) follows from (4.1) if
τ = 1. Further details and properties of the GIG distribution can be found in Jørgensen (1982).

If η(y) = Gµ,σ,ν(y), the OLLGIG density function (for y > 0) can be expressed as

f(y) = f(y;µ, σ, ν, τ) =

(
b

µ

)ν
τ yν−1

2Kν (σ−2)
exp

[
− 1

2σ2

(
by

µ
+

µ

b y

)]
×

{η(y)[1− η(y)]}τ−1 {η(y)τ + [1− η(y)]τ}−2. (4.4)

Figure 4.2 displays plots of the density function 4.4 for some parameter values thus showing
that the OLLGIG distribution could be very flexible for modeling bimodal data.

The quantile function (qf) corresponding to (4.1) has the simple form

y = QGIG

(
u1/τ

u1/τ + [1− u]1/τ

)
, (4.5)
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Figure 4.2. Plots of the OLLGIG density.

where QGIG(u) = G−1
µ,σ,ν(u) is the qf of the GIG distribution and u ∼ Uniform(0, 1).

Consider a sample divided into N groups and Yij (for the j-th individual in the i-th group,
i = 1, . . . , N and j = 1, . . . , ni) be independent random variables having the OLLGIG distribution. Each
group has random effects Wi represented by independent and identically distributed random variables
with density g(wi;V) and variance σ2

w, where V is a vector of unknown parameters. By assuming that
the random effects are unobserved random variables, the regression for correlated data can be expressed
as

µij = exp(xT
ij β + wi), (4.6)

where xT
ij = (xij1, . . . , xijp) is the p× 1 vector of covariates, β = (β1, . . . , βp)

T is the vector of unknown
parameters, and wi represents the random effects associated with the i-th group.

Further, assume that Cov(Wi, Yij) = 0 and that, conditioned on the random effects Wi, the
response variables within the group i are independent with variance σ2

w. So, the regression can be reduced
to the classical regression when σ2

w = 0. For the random effect regression (4.6), the following assumptions
hold:

• yij |wi ∼ OLLGIG(µij , σ, ν, τ), and marginal pdf

f(yij |wi) =

(
b

µij

)ν τ yν−1
ij

2Kν (σ−2)
exp

[
− 1

2σ2

(
byij
µij

+
µij

b yij

)]
×{η(yij)[1− η(yij)]}τ−1 {η(yij)τ + [1− η(yij)]

τ}−2, (4.7)

where
η(yij) =

∫ yij

0

(
b

µ

)ν
tν−1

2Kν(σ−2)
exp

[
− 1

2σ2

(
b t

µ
+

µ

b t

)]
dt.

• The random variables Wi ∼ N(0, σ2
w) (for i = 1, . . . , N) have density

g(wi;V) =
1√

2π σw

exp
(
− w2

i

2σ2
w

)
, wi ∈ R. (4.8)

The variance of Wi is V ar(Wi) = σ2
w. In this case, the parameter vector is V = σ2

w.
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4.3 Estimation, simulations and residuals

The estimates of the parameters of the random effect OLLGIG regression are calculated via
maximum likelihood. For each group i, the vector of the response variable is represented by Yi =

(Yi1, . . . ,Yini)
T . The likelihood function conditional on the random effects (independence within the

group) for the individuals of the i-th group is

Li(yij |wi) =

ni∏
j=1

f(yij |wi), (4.9)

where f(yij |wi) is the density (4.7). By assuming that the terms Wj and Yij are independent random
variables, the contribution of the i-th group to the marginal likelihood function is∫

Li(yij |wi) g(wi;σwi)dwi,

where g(·) is the random effect density (4.8) and Li(yij |wi) is given by (4.9).
Hence, under the assumption of independence between the N groups, the marginal likelihood

function for the vector θ = (βT , σ, ν, τ, σw)
⊤ reduces to

L(θ) =

N∏
i=1

∫ ni∏
j=1

f(yij |wi) g(wi, σw)dwi. (4.10)

Let (y11, x11), . . . , (y1n1 , x1n1), . . ., (yN1, xN1), . . ., (yNnN
, xNnN

) be n = n1+ . . .+ni observations, where
yij is the response variable and xij is the vector of covariates associated with the j-th observation of the
i-th group. Then, assuming the normal distribution (4.8) for the random effects and that Y is a random
variable having the OLLGIG density (4.7), the logarithm of the marginal likelihood function (4.10) can
be expressed as

l(θ) =

N∑
i=1

log
{∫ +∞

−∞

ni∏
j=1

(
b

µij

)ν τ yν−1
ij

2Kν (σ−2)
exp

[
− 1

2σ2

(
byij
µij

+
µij

b yij

)]
×

ni∏
j=1

{η(yij)[1− η(yij)]}τ−1

{η(yij)τ + [1− η(yij)]τ}2
√
2πσw

exp
(
−1

2

w2
i

σ2
w

)
dwi

}
. (4.11)

The MLE θ̂ of the vector of parameters can be calculated by maximizing the log-likelihood
(4.11) using the GAMLSS package in R software (Stasinopoulos et al., 2007). Initial values for β, σ and
σw can be taken from the fit of the IG regression with ν = 1 and τ = 1.

4.3.1 Simulation study

The quality of the MLEs of the parameters for the random effect OLLGIG regression is inves-
tigated via Monte Carlo simulations. One thousand replicates were performed for two groups (N = 10

and N = 20) with different sizes (ni = 5, 25 and 70, i = 1, . . . , N). A sample size ni was generated for
each replication from the OLLGIG(µij , σ, ν, τ) distribution with ν = 1.5 fixed under the configurations:
σ = 0.3 and τ = 0.6. For the parameters in µij , the following values were taken: β0 = 0.15 and β1 = 0.6,
and for the variance component σw = 0.2 (for N = 10) and σw = 0.5 (for N = 20). So, the parameter
µij has the systematic component µij = exp[(β0 + wi) + β1 xij1].

The response variable, the random effects and the explanatory variable were generated as:

• yij ∼ OLLGIG(µij , σ, ν, τ);

• Wi ∼ Normal(0, σ2
w);
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• xij ∼ Bernoulli(0.5).

Based on the results of the two scenarios (σw = 0.2, N = 10) and (σw = 0.5, N = 20) given in
Table 4.1, it is noted that the MSEs decrease when n increases (as expected).

Table 4.1. Results of the simulation study: Scenario 1: (σw = 0.2, N = 10). Scenario 2 (σw = 0.5,
N = 20).

ni = 5 ni = 25 ni = 70
Parameter AE Bias MSE AE Bias MSE AE Bias MSE

β0 0.232 0.082 0.024 0.139 -0.011 0.004 0.156 0.006 0.002
β1 0.624 0.024 0.019 0.595 -0.005 0.003 0.596 -0.004 0.001

Scenario 1 σ 0.465 0.165 0.129 0.301 0.001 0.019 0.269 -0.031 0.004
τ 0.964 0.364 0.536 0.619 0.019 0.095 0.548 -0.052 0.023
σw 0.179 -0.021 0.008 0.202 0.002 0.001 0.192 -0.008 <0.001
β0 0.376 0.226 0.060 0.385 0.235 0.057 0.264 0.114 0.013
β1 0.600 <0.001 0.008 0.598 -0.002 0.002 0.600 <0.001 0.001

Scenario 2 σ 0.348 0.048 0.046 0.288 -0.012 0.003 0.278 -0.022 0.002
τ 0.714 0.114 0.212 0.585 -0.015 0.023 0.561 -0.039 0.009
σw 0.284 -0.216 0.049 0.597 0.097 0.010 0.556 0.056 0.003

4.3.2 Residual analysis

For the new random effect regression, the quantile residuals (qrs) have the form

q̂rij = Φ−1

{
η̂τ̂ (yij)

η̂τ̂ (yij) + [1− η̂(yij)]τ̂

}
, (4.12)

where

η(yij) =

∫ yij

0

(
b̂

µ̂ij

)ν̂
tν̂−1

2K̂ν(σ̂−2)
exp

[
− 1

2σ̂2

(
b̂ t

µ̂ij
+

µ̂ij

b̂ t

)]
dt,

b̂ = K̂ν+1(σ̂
−2)/K̂ν(σ̂

−2) and K̂ν(t) =
1

2

∫ ∞

0

yν̂−1 exp
[
−1

2
t
(
u+ u−1

)]
du,

and Φ−1(·) is the inverse of the standard normal cdf.
Envelopes can be constructed from these residuals to provide better interpretation of the pro-

bability normal plots. The majority of the residuals will be randomly distributed within these bands if
the regression is well-fitted.

Simulation study for the residuals

A simulation study is conducted to investigate the behavior of the empirical distribution of the
residuals in (4.12). On thousand samples are generated via the algorithm described in Section 4.3.1. The
normal probability plots are obtained for testing the normality of the residuals.

The residuals q̂rij in (4.12) are calculated for each fitted regression. Figures 4.3 and 4.4 display
the plots of the ordered residuals versus the expected values of the normal order statistics. These plots
reveal that the empirical distribution of the qrs agrees with the standard normal distribution when n

increases.

4.4 Application: Hectare price data

An application is now provided using the GAMLSS package in the R software (Stasinopoulos
et al., 2007) to explain the average price per hectare of bare land in ten cities in the state of São Paulo
(Brazil). These data come from the website of the Institute of Agricultural Economics (IEA) and the
Office to Coordinate Integral Technical Assistance (CATI)1 and refer to the two halves of 2015. The

1See: link: http://ciagri.iea.sp.gov.br/bancoiea_TEste/Precor_TerraNua_SEFAZ.aspx
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(a) (b) (c)

Figure 4.3. Normal probability plots for the qrs (N = 10) with n = 5, n = 25 and n = 70.

(a) (b) (c)

Figure 4.4. Normal probability plots for the qrs (N = 20) with n = 5, n = 25 and n = 70.

bare land price is defined as the commercial value of the land after deducting the value of structures,
installations and other improvements, such as: buildings, storage sheds, barns and worker housing;
stables, corrals, water pipes/hoses, aviaries, pigpens and other installations for shelter or management
of animals; yards and similar areas for drying of agricultural products; rural electrification equipment;
groundwater catchment and other installations for supply or distribution of water, including dams and
tanks; fences; other improvements not related to rural activity; as well as perennial and temporary crops,
cultivated and improved natural pastures; and planted forests.

The random effect OLLGIG regression is utilized to explain how the land categories of ten cities
(Sorocaba, Adamantina, Águas de Lindóia, Alto Alegre, Bariri, Itapetininga, Itapeva, Santo André, São
Carlos and Campinas) influence the average land price per hectare. A brief description of each city is now
described. Sorocaba is one of the best cities in Brazil for investment in new start-ups as well as to live.
It is near the capital, São Paulo. Adamantina has an area of approximately 411 square kilometers and is
known for farming and stock breeding, and rural life in general. Águas de Lindóia is the capital of Brazil
regarding hot springs, the reason why it is a cornerstone of the “Paulista Waters Circuit”. Alto Alegre
was served by Companhia Telefônica Brasileira (CTB) until 1973, and after that it was absorved into the
Telecomunicações de São Paulo (TELESP), which constructed a central switching building that is still
used today. In 1998, the company was sold to Telefônica as part of the privatization program, and in
2012 the company adopted the Vivo brand for fixed and cellular telephone operations. Bariri has a mixed
industrial and agricultural base, in the latter case mostly sugarcane growing. Itapetininga is a large
producer of corn, soybeans, oranges, milk and beef, as well as resins. Itapeva is an important producer
of ores, especially phyllite, and also is among the leading municipalities in the state in the production of
grain crops, besides having extensive reforested areas. Santo André has predominantly Atlantic Forest
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vegetation, mainly in parks and environmental preservation areas. São Carlos is an important regional
industrial center. Finally, Campinas is the state’s largest city other than the capital, with a strong base
of high-tech companies and educational institutions.

For this study, the variables are:

• yij : average price (R$) of a hectare of bare land (this variable was divided by 1,000);

• xij1: land categories (field land, primary cropland, secondary cropland, pasture land, reforestation
land) (for j = 1, . . . , ni, i = 1, . . . , 10).

Table 4.2 lists the averages and standard deviations (SDs) of the prices per hectare of bare land
for each land category. The maximum price refers to the primary cropland, whereas the minimum price
refers to the field land. The histogram of the average price per hectare (yij) in Figure 1 (Section 1) shows
the presence of bimodality. So, for the marginal analysis, the OLLGIG distribution is capable to model
these data.

Table 4.2. Averages and SDs for hectare price data.

land category Average SD
Field land 16.846 7.691

Primary cropland 29.971 11.829
Secondary cropland 25.656 10.803

Pasture land 22.810 9.003
Reforestation land 18.754 7.689

Table 4.3. Results from the fitted densities.

Distribution log(µ) log(σ) ν τ
OLLGIG 21.132 3.700 23.118 0.324

(0.936) (0.931) (13.348) (0.144)
GIG 22.806 0.632 3.374 1

(1.091) (0.249) (2.142) (-)
IG 22.807 0.109 -0.5 1

(1.192) (0.008) (-) (-)

Table 4.3 gives the MLEs of the parameters and their standard errors (SEs) (in parentheses)
from the fitted OLLGIG, GIG and IG distributions to the hectare prices. Table 4.4 lists the values
of AIC (Akaike Information Criterion), CAIC (Consistent Akaike Information Criterion), BIC (Baye-
sian Information Criterion), HQIC (Hannan-Quinn information criterion), A∗ (Anderson–Darling), W ∗

(Cramér-von Misses) and KS (Kolmogarov–Smirnov) for the fitted distributions. The results reveal that
the OLLGIG distribution has the lowest values for these statistics, among the three. So, it could be
chosen as the best distribution to explain the current data. Likelihood ration (LR) tests for comparing

Table 4.4. Some statistical measures.

Distribution AIC CAIC BIC HQIC A∗ W ∗ KS
OLLGIG 744.634 745.055 755.054 748.851 0.238 0.031 0.050

GIG 748.182 748.432 755.998 751.345 0.554 0.087 0.076
IG 749.077 749.201 754.288 751.186 0.863 0.138 0.093

the OLLGIG distribution with two special cases are reported in Table 4.5. The figures in this table
(specially the p-values) reveal that the OLLGIG distribution provides a better fit to these data than the
other two special cases.
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Table 4.5. LR tests.

Models Hypotheses LR statistic p-value
OLLGIG vs GIG H0 : τ = 1 vs H1 : H0 is false 5.559 0.018
OLLGIG vs IG H0 : τ = 1, ν = −0.5 vs H1 : H0 is false 8.444 0.015

The empirical and estimated cdfs of the OLLGIG, GIG and IG distributions are given in Figure
4.5(a). The histogram of the data and the fitted OLLGIG, GIG and IG densities are displayed in Figure
4.5(b). These plots also reveal that the OLLGIG distribution provides the best fit to the hectare price
data.
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Figure 4.5. (a) Three estimated cdfs and empirical cdf. (b) Three estimated densities.

Regression analysis with systematic components

Four dummy variables dij1, . . . , dij4 are defined since the covariable xij1 has five categories
of soil. According to the previous analysis, the random effect OLLGIG regression has the form (for
j = 1, . . . , ni, i = 1, . . . , 10)

µij = exp (β0 + β1 dij1 + β2 dij2 + β3 dij3 + β4 dij4 + wi) .

The random effect OLLGIG, GIG and IG regressions are compared via the AIC, BIC and GD
(Global Deviance) statistics in Table 4.6. The wider regression outperforms the GIG and IG regressions
irrespective of the criteria and then it can be used effectively in the analysis of these data.

Table 4.6. Statistics.

Model AIC BIC GD
OLLGIG 524.969 568.186 491.790

GIG 528.885 570.248 497.131
IG 552.789 591.419 523.134

The results from the random effect OLLGIG regression fitted to these data via the GAMLSS
package in R software are reported in Table 4.7. The explanatory variable xij1 at the 5% level gives a
significant difference among the levels of the land category to explain the price per hectare of bare land.
The estimate of the variance component σw is also different from zero. So, it is necessary to consider
random effects in the regression. Some interpretations are addressed at the end of this section.
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Table 4.7. Results from the fitted random effect OLLGIG regression.

Parameter MLE SE p-value
Intercept β0 2.902 0.026 <0.001

primary cropland β1 0.608 0.040 <0.001
secondary cropland β2 0.441 0.042 <0.001

pasture land β3 0.322 0.043 <0.001
reforestation land β4 0.121 0.041 0.004

log(σ) -0.697 0.076
ν -4.167 0.961
τ 3.358 0.245
σw 0.424

The random effect OLLGIG regression is compared with two special regressions via LR statistics
in Table 4.8. The figures in this table indicate that the wider regression provides a better fit to these
data than the other two regressions.

Table 4.8. LR tests.

Regressions Hypotheses LR statistic p-value
OLLGIG vs GIG H0 : τ = 1 vs H1 : H0 is false 5.341 0.012
OLLGIG vs IG H0 : τ = 1 and ν = −0.5 vs H1 : H0 is false 31.344 <0.001

Further, the qrs are plotted in Figure 4.6(a). These residuals are randomized around zero, thus
revealing the suitability of the regression for analyzing the hectare price data. Finally, the quality of the
adjustment range of the wider regression is verified by constructing the normal probability plot for the
qrs with the simulated envelope. It is clear a good fitted regression shown in this envelope.
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Figure 4.6. (a) Residual analysis of the random effect OLLGIG regression fitted to the hectare price
data. (b) Normal probability plot for the qrs with envelope.

Table 4.9 provides the hypothesis testing to compare all levels of the covariate xij1 considering
the complete hectare price data. All levels of the land categories are significant (5%), and then there is
strong evidence of differences between the price per hectare of bare land for each category.

The predicted random effects of the fitted regression are given in Table 4.10.
The hypothesis testing comparing the levels of the land category for each city separately with

the associated predicted random effects are reported in the Appendix. Considering the 5% significance
level, the interpretations based on these tables are addressed below.
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Table 4.9. Hypothesis testing for bare land category levels.

Hypotheses H0 Estimate SE p-value
primary cropland - field land = 0 0.608 0.040 <0.001

secondary cropland - field land = 0 0.441 0.042 <0.001
pasture land - field land = 0 0.322 0.043 <0.001

reforestation land - field land = 0 0.121 0.041 0.004
secondary cropland - primary cropland = 0 -0.167 0.045 <0.001

pasture land - primary cropland = 0 -0.286 0.045 <0.001
reforestation land - primary cropland = 0 -0.487 0.044 <0.001

pasture land - secondary cropland = 0 -0.119 0.047 0.013
reforestation land - secondary cropland = 0 -0.321 0.045 <0.001

reforestation land - pasture land = 0 -0.202 0.046 <0.001

Table 4.10. Prediction of the random effects.

wi Predicted Cities
w1 0.618 Sorocaba
w2 -0.833 Adamantina
w3 0.369 Águas de Lindóia
w4 -0.331 Alto Alegre
w5 -0.024 Bariri
w6 0.139 Itapetininga
w7 -0.339 Itapeva
w8 -0.082 Santo André
w9 -0.027 São Carlos
w10 0.508 Campinas

• Table 4.11 gives the results of the comparisons between the categories of land in the city of Sorocaba
in relation to the hectare price; there is no significant difference between the categories: secondary
cropland - primary cropland.

• Table 4.12 shows that there is a difference between the categories of land: primary cropland - field
land, pasture land - primary cropland and reforestation land - primary cropland in the Adamantina
city in relation to the hectare price.

• Table 4.13 shows that there is a significant difference between all categories of land in the Águas
de Lindóia city in relation to the hectare price.

• Table 4.14 shows that there is no significant difference between the categories of land in the Alto
Alegre city in relation to the hectare price.

• Table 4.15 shows that there is a difference between the categories: primary cropland - field land,
secondary cropland - field land, pasture land - field land, reforestation land - field land, reforestation
land - primary cropland and reforestation land - secondary cropland in the Bariri city in relation
to the hectare price.

• Table 4.16 shows that there is a significant difference between all categories of land in the Itapeniniga
city in relation to the hectare price.

• Table 4.17 shows that there is a difference between the categories: primary cropland - field land,
secondary cropland - field land, pasture land - field land, secondary cropland - primary croplands
and pasture land - primary cropland in the Itapeva city in relation to the hectare price.

• Table 4.18 shows that there is a difference between the categories: primary cropland - field land,
secondary cropland - field land, pasture land - field land, reforestation land - primary cropland,
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reforestation land - secondary cropland and reforestation land - pasture land in the Santo André
city in relation to the hectare price.

• Table 4.19 shows that there is no significant difference between the categories of land in the São
Carlos city in relation to the hectare price.

• Table 4.20 shows the results of the comparisons between the categories of land in the city of
Campinas in relation to the hectare price, note that there is no significant difference between the
categories: reforestation land - field land secondary cropland - primary cropland reforestation land
- pasture land.

4.5 Conclusions

This work presents a new random effect regression based on the odd log-logistic Generalized
inverse Gaussian distribution. The new regression is a useful extension of some regressions with random
effects and it can be a valuable option for data analysis when the response variable is bimodal in the areas
of economics and agriculture. For different sample sizes, a simulation study was carried out to verify the
consistency of the maximum likelihood estimates of the parameters. Quantile residuals are defined for
the proposed regression. The versatility of the new regression is proved for estimating the average hectare
value of raw land.

Appendix

Table 4.11. Hypothesis testing for land category levels to Sorocaba city.

primary cropland - field land = 0 0.467 0.031 <0.001
secondary cropland - field land = 0 0.384 0.032 <0.001

pasture land - field land = 0 0.221 0.029 0.001
reforestation land - field land = 0 0.031 0.052 0.578

secondary cropland - primary cropland = 0 -0.084 0.028 0.032
pasture land - primary cropland = 0 -0.247 0.027 <0.001

reforestation land - primary cropland = 0 -0.436 0.050 <0.001
pasture land - secondary cropland = 0 -0.163 0.028 0.002

reforestation land - secondary cropland = 0 -0.353 0.051 <0.001
reforestation land - pasture land = 0 -0.189 0.049 0.013

Table 4.12. Hypothesis testing for land category levels to Adamantina city .

primary cropland - field land = 0 0.425 0.137 0.027
secondary cropland - field land = 0 0.271 0.135 0.101

pasture land - field land = 0 0.176 0.136 0.252
reforestation land - field land = 0 0.163 0.135 0.280

secondary cropland - primary cropland = 0 -0.154 0.091 0.149
pasture land - primary cropland = 0 -0.249 0.093 0.044

reforestation land - primary cropland = 0 -0.262 0.091 0.035
pasture land - secondary cropland = 0 -0.094 0.089 0.339

reforestation land - secondary cropland = 0 -0.108 0.087 0.272
reforestation land - pasture land = 0 -0.013 0.089 0.889
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Table 4.13. Hypothesis testing for land category levels to Águas de Lindóia city.

primary cropland - field land = 0 0.759 0.059 <0.001
secondary cropland - field land = 0 0.555 0.033 <0.001

pasture land - field land = 0 0.404 0.034 <0.001
reforestation land - field land = 0 0.171 0.018 <0.001

secondary cropland - primary cropland = 0 -0.202 0.066 0.028
pasture land - primary cropland = 0 -0.354 0.067 0.003

reforestation land - primary cropland = 0 -0.586 0.060 <0.001
pasture land - secondary cropland = 0 -0.151 0.044 0.018

reforestation land - secondary cropland = 0 -0.384 0.033 <0.001
reforestation land - pasture land = 0 -0.232 0.034 0.001

Table 4.14. Hypothesis testing for land category levels to Alto Alegre city.

Hypotheses H0 Estimate SE p-value
primary cropland - field land = 0 0.418 0.192 0.081

secondary cropland - field land = 0 0.299 0.204 0.203
pasture land - field land = 0 0.284 0.209 0.232

reforestation land - field land = 0 0.025 0.171 0.891
secondary cropland - primary cropland = 0 -0.119 0.237 0.636

pasture land - primary cropland = 0 -0.133 0.241 0.604
reforestation land - primary cropland = 0 -0.393 0.209 0.119

pasture land - secondary cropland = 0 -0.014 0.251 0.957
reforestation land - secondary cropland = 0 -0.274 0.220 0.269

reforestation land - pasture land = 0 -0.259 0.225 0.301

Table 4.15. Hypothesis testing for land category levels to Bariri city.

primary cropland - field land = 0 0.954 0.176 0.003
secondary cropland - field land = 0 0.778 0.131 0.002

pasture land - field land = 0 0.623 0.139 0.007
reforestation land - field land = 0 0.268 0.094 0.036

secondary cropland - primary cropland = 0 -0.177 0.201 0.419
pasture land - primary cropland = 0 -0.331 0.207 0.169

reforestation land - primary cropland = 0 -0.687 0.179 0.012
pasture land - secondary cropland = 0 -0.155 0.170 0.405

reforestation land - secondary cropland = 0 -0.509 0.136 0.013
reforestation land - pasture land = 0 -0.355 0.144 0.057

Table 4.16. Hypothesis testing for land category levels to Itapetininga city.

primary cropland - field land = 0 0.572 0.027 <0.001
secondary cropland - field land = 0 0.404 0.009 <0.001

pasture land - field land = 0 0.301 0.006 <0.001
reforestation land - field land = 0 0.101 0.008 <0.001

secondary cropland - primary cropland = 0 -0.167 0.028 0.002
pasture land - primary cropland = 0 -0.271 0.027 <0.001

reforestation land - primary cropland = 0 -0.471 0.027 <0.001
pasture land - secondary cropland = 0 -0.104 0.008 <0.001

reforestation land - secondary cropland = 0 -0.304 0.009 <0.001
reforestation land - pasture land = 0 -0.199 0.013 0.004
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Table 4.17. Hypothesis testing for land category levels to Itapeva city.

primary cropland - field land = 0 0.699 0.061 <0.001
secondary cropland - field land = 0 0.474 0.056 <0.001

pasture land - field land = 0 0.339 0.071 0.005
reforestation land - field land = 0 -0.157 0.280 0.599

secondary cropland - primary cropland = 0 -0.225 0.065 0.018
pasture land - primary cropland = 0 -0.359 0.079 0.006

reforestation land - primary cropland = 0 -0.489 0.909 0.614
pasture land - secondary cropland = 0 -0.134 0.074 0.127

reforestation land - secondary cropland = 0 -0.614 0.268 0.071
reforestation land - pasture land = 0 -0.094 0.904 0.921

Table 4.18. Hypothesis testing for land category levels to Santo André city.

primary cropland - field land = 0 0.889 0.182 0.004
secondary cropland - field land = 0 0.598 0.076 0.001

pasture land - field land = 0 0.548 0.070 0.001
reforestation land - field land = 0 0.141 0.121 0.298

secondary cropland - primary cropland = 0 -0.291 0.183 0.172
pasture land - primary cropland = 0 -0.341 0.181 0.117

reforestation land - primary cropland = 0 -0.749 0.206 0.015
pasture land - secondary cropland = 0 -0.049 0.073 0.527

reforestation land - secondary cropland = 0 -0.457 0.123 0.014
reforestation land - pasture land = 0 -0.408 0.119 0.019

Table 4.19. Hypothesis testing for land category levels to São Carlos city.

primary cropland - field land = 0 0.393 0.253 0.182
secondary cropland - field land = 0 0.278 0.251 0.318

pasture land - field land = 0 0.199 0.239 0.443
reforestation land - field land = 0 0.147 0.224 0.540

secondary cropland - primary cropland = 0 -0.115 0.272 0.691
pasture land - primary cropland = 0 -0.194 0.261 0.491

reforestation land - primary cropland = 0 -0.245 0.248 0.367
pasture land - secondary cropland = 0 -0.079 0.259 0.772

reforestation land - secondary cropland = 0 -0.131 0.245 0.617
reforestation land - pasture land = 0 -0.052 0.233 0.834

Table 4.20. Hypothesis testing for land category levels to Campinas city.

primary cropland - field land = 0 0.418 0.057 <0.001
secondary cropland - field land = 0 0.312 0.054 0.002

pasture land - field land = 0 0.171 0.053 0.024
reforestation land - field land = 0 0.040 0.079 0.629

secondary cropland - primary cropland = 0 -0.106 0.050 0.088
pasture land - primary cropland = 0 -0.247 0.049 0.004

reforestation land - primary cropland = 0 -0.378 0.076 0.004
pasture land - secondary cropland = 0 -0.141 0.046 0.028

reforestation land - secondary cropland = 0 -0.272 0.074 0.014
reforestation land - pasture land = 0 -0.131 0.074 0.136
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5 FINAL CONSIDERATIONS

In this thesis, I develop flexible parametric and semiparametric regression models based on
an extension of the generalized inverse Gaussian distribution and on the odd log-logistic generator of
distributions. The new proposed distribution is called the odd log-logistic generalized inverse Gaussian
(OLLGIG). The main characteristic of this distribution is that it permits modeling bimodal data without
the need to use a mixture of distributions. I use the gamlss package available in the R software to obtain
the maximum likelihood and penalized maximum likelihood estimates (MLE and PMLE), as well as to
evaluate the sensitivity (global influence and analysis of residuals) of the proposed regression models. In
Chapter 2, I define the OLLGIG distribution and describe various structural properties. I then present
various simulation studies to evaluate the performance of the MLEs and to study the distribution and
residuals utilized empirically to validate the assumptions of the proposed regression models. Finally, I
present two applications to real data, the first without considering covariables and the second considering
covariables in two systematic components. In Chapter 3, I propose additive, partial and semiparametric
regression models based on the OLLGIG distribution and consider three types of penalized smoothers,
as well as discussing selection criteria, sensitivity analysis and residuals. Finally, data on climatology,
ethanol use and air quality are used to verify the versatility of the proposed models. In Chapter 4
I propose the regression model with fixed effect in the intercept based on the OLLGIG distribution,
applying it to a dataset on land values per hectare in some cities in the state of São Paulo, Brazil.


