• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.104.2021.tde-23062021-142435
Documento
Autor
Nome completo
Adalto Speroto
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2021
Orientador
Banca examinadora
Vargas Junior, Valdivino (Presidente)
Correa, Alejandro Roldan
Grejo, Carolina Bueno
Lebensztayn, Élcio
Mora, Erika Alejandra Rada
Título em português
Resultados para o modelo de rumor de Maki-Thompson em árvores
Palavras-chave em português
Árvores aleatórias
Árvores homogêneas
Modelo de Maki-Thompson
Transição de fase
Resumo em português
Nesta tese, estudamos o modelo de rumor de Maki-Thompson em árvores homogêneas infinitas que é formulado como um processo de Markov a tempo contínuo. Este modelo pode ser definido como um sistema de partículas interagentes representando a disseminação de um boato por indivíduos em uma árvore homogênea. Assumimos que cada indivíduo possa pertencer a uma das três classes em uma população representada por: ignorantes, propagadores e contidos. Um propagador conta o boato a qualquer um de seus vizinhos ignorantes a uma taxa constante. Por outro lado, com a mesma taxa, um propagador torna-se um contido depois de interagir com outro propagador ou um contido. Ainda neste trabalho, estendemos nossa análise a duas generalizações, na primeira supomos que cada propagador deixa de propagar o boato logo após estar envolvido em um determinado número de tentativas frustradas e na segunda estendemos o modelo de Maki-Thompson às árvores aleatórias independentes e identicamente distribuídas. Estudamos condições suficientes sob as quais o boato se extingue ou sobrevive com probabilidade positiva.
Título em inglês
Results for the model of the Maki-Thompson rumor model in trees
Palavras-chave em inglês
Homogeous tree
Maki-Thompson model
Phase transition
Randon trees
Resumo em inglês
In this work, we study the Maki-Thompson rumor model on infinite homogeneous trees which is formulated as a continuous-times Markov chain. This model can be defined as a system of interacting particles representing the spread of a rumor by individuals in a homogeneous tree. We assume that each individual can belong to one of three classes in a population represented by: ignorants, spreaders and stifles. A spreader tells the rumor to any of its ignorant (nearest) neighbors at a constant rate. On the other hand, also at the same rate, a spreader becomes a stifler after interact with other spreader (nearest neighbors) or a stifler. Still in this work, we extend our analysis to two generalizations, in the first one we assume that each propagator stops spreading the rumor right after being involved in a certain number of failed attempts and in the second we extend the Maki-Thompson model to Independent and identically distributed random trees. We study sufficient conditions under which the rumor either becomes extinct or survives with positive probability.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2021-06-23
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2021. Todos os direitos reservados.