• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.100.2020.tde-19052020-101339
Documento
Autor
Nombre completo
Vitor Cano
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2020
Director
Tribunal
Nolasco, Marcelo Antunes (Presidente)
Fernández Núñez, Eutimio Gustavo
Maiorano, Alfredo Eduardo
Ottoni, Cristiane Angelica
Souza, Theo Syrto Octavio de
Zaiat, Marcelo
Título en inglés
Energy generation in a novel microbial fuel cell: characterization and dynamics of microbial communities using organic matter and ammonia as electron donors
Palabras clave en inglés
Alternative sources of energy
Bioelectrochemical system
Bioenergy
Denitrification
Granular activated carbon
Sustainability
Resumen en inglés
The microbial fuel cell (MFC) is a novel technology that can generate clean energy from wastes. In this study, a novel double chamber MFC with low-cost electrodes was developed and assessed to convert organic matter into electricity under different temperatures (~25, 35 and 55 °C), external resistances (13 and 300 Ω) and electron acceptors (oxygen and nitrate) and also to assess the ability to generate electricity from ammonia oxidation. The MFC was evaluated in terms of microbial community structure (16S rRNA genes sequencing), energy generation, conversion and treatment efficiency. The results showed that temperature was a crucial factor controlling the performance with Geobacter as the most dominant electrogen genus (relative abundance of 20%) on the anode at 23°C and Tolumonas, Lactococcus and Peptococcaceae at 55° (combined relative abundance > 33%). The genus Comamonas was associated to greater cathode performance at 23 °C, but at 35 and 55 °C they were not found and the highest cathode charge resistances were observed. The use of lower external resistance of 13 Ω influenced the abundance and activity of electrogen bacteria on the anode, ultimately improving the coulombic efficiency up to 12%. With nitrate as electron acceptor, power density up to 17 W m-3 was achieved, while, with oxygen as electro acceptor in optimum operating condition (Rext = 300Ω , 23 °C, organic loading rate of 3.64 kg COD m-3 d-1) maximum power density of 48 W m-3 was achieved. In terms of treatment, high efficiency (COD removal > 90 %) was observed regardless of the applied conditions. It was also demonstrated that, in a novel bioelectrochemical process with ammonia as electron donor, the genus Nitrosomonas was associated with current generation, electrogen bacteria adapted to oxidize ammonia, but anammox bacteria presented electric current considerably lower. So, through an interdisciplinary approach, this study contributed to the development of a technology for clean and renewable energy generation combined with wastewater treatment aimed at inorganic and organic compounds
Título en portugués
Geração de energia em uma nova célula a combustível microbiana: caracterização e dinâmica de comunidades microbianas utilizando matéria orgânica e amônia como doadores de elétrons
Palabras clave en portugués
Bioenergia
Carvão ativado granular
Desnitrificação
Fontes alternativas de energia
Sistema bioeletroquímico
Sustentabilibidade
Resumen en portugués
A célula a combustível microbiana (CCM) é uma tecnologia inovdora para gerar energia limpa a partir de resíduos. Neste estudo, um novo modelo de CCM de câmara dupla e eletrodos de baixo custo foi desenvolvido e avaliado para converter matéria orgânica em eletricidade sob diferentes temperaturas (~ 25, 35 e 55 °C), resistências externas (13 e 300 Ω) e aceptores de elétrons (oxigênio e nitrato) e avaliado também na capacidade de gerar eletricidade a partir de amônia. A CCM foi avaliada em termos de estrutura da comunidade microbiana (sequenciamento do gene 16SRNA), geração de energia e eficiência de conversão e tratamento. Os resultados mostraram que a temperatura foi um fator crucial controlando o desempenho, com Geobacter como o gênero eletrogênico dominante (abundancia relativa de 20%) no ânodo a 23°C e Tolumonas, Lactococcus e Peptococcaceae a 55°C (abundância relativa combinada > 30%). O gênero Comamonas foi associado ao melhor desempenho do cátodo a 23°C, mas a 35 e 55 °C ele não foi encontrado e as maiores resistências de transferência carga catódica foram observadas. O uso de uma resistência externa mais baixa de 13 Ω influenciou na abundância e atividade de bactérias eletrogênicas no ânodo, cuminando no aumento da eficiêmcia coulombiana para até 12%. Com nitrato como acceptor de elétrons, obteve-se densidade de potência de até 17 W m-3, enquanto com oxigênio em condições ótimas de operação (Rext = 300 Ω, 23 °C, taxa de carregamento de 3,64 kg DQO m-3 d-1) obteve-se densidade de potência máxima de 48 W m-3. Em termos de tratamento, observou-se alta eficiência (remoção de DQO > 90 %), independentemente das condições aplicadas. Também foi demonstrado que, em um novo processo bioeletroquímico com amônia como doadora de elétrons, o gênero Nitrosomonas foi associado à geração de corrente, bactérias eletrogênicas adaptaram-se à oxidação de amônia, mas as bactérias anammox apresentaram corrente elétrica consideravelmente mais baixa. Portanto, por meio de uma abordagem interdisciplinar, este estudo contribuiu para o desenvolvimento de uma tecnologia para geração de energia limpa e renovável combinada com tratamento de águas residuárias direcionado a compostos orgânicos e inorgânicos
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Cano_Thesis.pdf (10.00 Mbytes)
Fecha de Publicación
2021-04-09
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2024. Todos los derechos reservados.