• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.76.2007.tde-15042008-211812
Documento
Autor
Nome completo
Sylvio Barbon Júnior
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2007
Orientador
Banca examinadora
Guido, Rodrigo Capobianco (Presidente)
Maciel, Carlos Dias
Travieso, Gonzalo
Título em português
Dynamic Time Warping baseado na transformada wavelet
Palavras-chave em português
Dynamic Time Warping
Processamento digital de sinais
Reconhecimento automático de fala
Reconhecimento de voz
Transformada wavelet
Resumo em português
Dynamic Time Warping (DTW) é uma técnica do tipo pattern matching para reconhecimento de padrões de voz, sendo baseada no alinhamento temporal de um sinal com os diversos modelos de referência. Uma desvantagem da DTW é o seu alto custo computacional. Este trabalho apresenta uma versão da DTW que, utilizando a Transformada Wavelet Discreta (DWT), reduz a sua complexidade. O desempenho obtido com a proposta foi muito promissor, ganhando em termos de velocidade de reconhecimento e recursos de memória consumidos, enquanto a precisão da DTW não é afetada. Os testes foram realizados com alguns fonemas extraídos da base de dados TIMIT do Linguistic Data Consortium (LDC)
Título em inglês
Dynamic Time Warping based-on wavelet transform
Palavras-chave em inglês
Automatic speech recognition
Digital signal processing
Dynamic Time Warping
Speech processing
Transformada wavelet
Resumo em inglês
Dynamic TimeWarping (DTW) is a pattern matching technique for speech recognition, that is based on a temporal alignment of the input signal with the template models. One drawback of this technique is its high computational cost. This work presents a modified version of the DTW, based on the DiscreteWavelet Transform (DWT), that reduces the complexity of the original algorithm. The performance obtained with the proposed algorithm is very promising, improving the recognition in terms of time and memory allocation, while the precision is not affected. Tests were performed with speech data collected from TIMIT corpus provided by Linguistic Data Consortium (LDC).
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2008-04-23
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.