• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.76.1994.tde-09032009-145343
Documento
Autor
Nome completo
Maria do Carmo Nicoletti
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 1994
Orientador
Banca examinadora
Baranauskas, Maria Cecilia Calani
Fontanari, Jose Fernando
Garcia Neto, Alvaro
Monard, Maria Carolina
Rillo, Marcio
Título em português
Ampliando os limites do aprendizado indutivo de máquina através das abordagens construtiva e relacional.
Palavras-chave em português
Aprendizado construtivo
Aprendizado de máquina
Programação lógica indutiva
Resumo em português
Este trabalho investiga Aprendizado Indutivo de Máquina como função das linguagens de descrição, utilizadas para expressar instancias, conceitos e teoria do domínio. A ampliação do poder de representação do aprendizado proporcional e abordada no contexto de indução construtiva, no domínio de funções booleanas, com a proposta de uma estratégia de composição de atributos denominada root-fringe. Avaliações experimentais dessa e de outras estratégias de construção de novos atributos foram conduzidas e os resultados analisados. Dois métodos de poda, para tratamento de ruídos, em aprendizado de arvores de decisão, foram avaliados num ambiente de indução construtiva e os resultados discutidos. Devido a limitação do aprendizado proposicional, foram investigadas formas de ampliação dos limites do aprendizado, através da ampliação do poder representacional das linguagens de descrição. Foi escolhida Programação Lógica Indutiva - PLI - que e um paradigma de aprendizado indutivo que usa restrições de Lógica de Primeira Ordem como linguagens de descrição. O aprendizado em PLI só é factível quando as linguagens utilizadas estão restritas e é fortemente controlado, caso contrário, o aprendizado em PLI se torna indecidível. A pesquisa em PLI se direcionou a formas de restrição das linguagens de descrição da teoria do domínio e de hipóteses. Três algoritmos que "traduzem" a teoria do domínio de sua forma intencional, para extensional, são apresentados. As implementações de dois deles são discutidas. As implementações realizadas deram origem a dois ambientes experimentais de aprendizado: o ambiente proposicional experimental, do qual fazem parte o ambiente experimental construtivo, e o ambiente experimental relacional.
Título em inglês
Extending the limits of inductive machine learning through constructive and relational approaches.
Palavras-chave em inglês
Constructive learning
Inductive logic programming
Machine learning
Resumo em inglês
This work investigates Inductive Machine Learning as a function of the description languages employed to express instances, concepts and domain theory. The enlargement of the representational power of propositional learning methods is approached via constructive induction, in the domain of boolean functions, through the proposal of a bias for composing attributes, namely, the bias root-fringe. Experimental evaluation of root-fringe, as well as other biases for constructing new attributes was conducted and the results analyzed. Two pruning methods for decision trees were evaluated in an environment of constructive induction and the results discussed. Due to the limitations of propositional learning, ways of enlarging the limits of the learning process were investigated through enlarging the representational power of the description languages. It was chosen Inductive Logic Programming - ILP - that is an inductive learning paradigm that uses restrictions of First Order Logic as description languages. Learning using ILP is only feasible when the languages are restricted and are strongly controlled; otherwise, learning in ILP becomes undecidible. Research work in ILP was directed towards restricting domain theory and hypotheses description languages. Three algorithms that "translate" the intentional expression of a domain theory into its extensional expression are presented. The implementations of two of them are discussed. The implementations gave rise to two experimental learning environments: the propositional environment, which includes the constructive environment, and the relational environment.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2009-03-17
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.