• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.76.2012.tde-07122012-145352
Documento
Autor
Nome completo
Francieli Colussi
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2012
Orientador
Banca examinadora
Polikarpov, Igor (Presidente)
Bon, Elba Pinto da Silva
Malavazi, Iran
Polizeli, Maria de Lourdes Teixeira de Moraes
Squina, Fabio Marcio
Título em português
Caracterização bioquímica, biofísica e estrutural da Celobiohidrolase I de Trichoderma harzianum envolvida na hidrólise da biomassa lignocelulósica
Palavras-chave em português
Trichoderma harzianum
Biomassa
Celobiohidrolase I
Etanol celulósico
Hidrólise enzimática
Resumo em português
Devido à sua importante atividade celulolítica, o fungo Trichoderma harzianum possui um grande potencial de aplicação na hidrólise da biomassa. No entanto, as celulases deste fungo filamentoso ainda não foram caracterizadas em profundidade. A celobiohidrolase I (CBHI) é a principal enzima celulolítica produzida por Trichoderma sp. e atualmente é uma das celulases mais investigadas para aplicações de biocombustíveis. A CBHI hidrolisa celulose cristalina à unidades solúveis de celobiose, o que a torna uma enzima chave para a produção de açúcares fermentáveis a partir da biomassa. O objetivo deste trabalho foi purificar e caracterizar a CBHI de Trichoderma harzianum (ThCBHI) bioquímica, biofísica e estruturalmente. Primeiramente foi estabelecido um protocolo de purificação eficiente da proteína a partir da expressão homóloga no fungo. A caracterização bioquímica ThCBHI mostrou que a proteína possui uma massa molecular de 66 kDa, pI de 5,23 e o pH e a temperatura de atividade ótima foram 5,0 e 50 ºC, respectivamente. A influência do pH e temperatura sobre as estruturas secundárias e terciárias e atividade enzimática da ThCBHI foram analisados por espectroscopia de CD, fluorescência e SAXS, e os resultados mostraram que as perturbações de pH e de temperatura afetam a estabilidade por dois mecanismos diferentes. As variações de pH podem modificar a protonação dos resíduos, afetando diretamente sua atividade, levando a desestabilização estrutural apenas em limites extremos de pH, como pH 9,0. A temperatura, por outro lado, tem uma influência direta sobre enovelamento e compactação da enzima, fazendo com que na temperatura em torno de 60 ºC ocorra perda da estrutura secundária, e terciária. Quando as análises foram realizadas na presença do produto de reação e também inibidor competitivo, celobiose, a estabilidade térmica da ThCBHI aumentou significativamente de 61,5 para 65,9 ºC. Os estudos estruturais e simulações de dinâmica molecular mostraram que a flexibilidade do resíduo Tyr260, em comparação com a Tyr247 do homólogo de T. reesei CBHI (TrCBHI), é aumentada devido às cadeias laterais curtas adjacentes de Val216 e Ala384 criando uma abertura adicional na face lateral do túnel catalítico. A ThCBHI também apresenta um loop encurtado na entrada do túnel de interação com a celulose, o que tem sido descrito como o responsável por interagir com o substrato de TrCBHI. Estas características estruturais podem explicar por que a ThCBHI apresenta maior valor de kcat e menor inibição pelo produto em comparação com TrCBHI.
Título em inglês
Biochemistry, biophysics and structural characterization of cellobiohydrolase I from Trichoderma harzianum involved in the hydrolysis of lignocellulosic biomass
Palavras-chave em inglês
Trichoderma harzianum
Biomass
Cellobiohydrolase I
Cellulosic ethanol
Enzymatic hydrolysis
Resumo em inglês
Trichoderma harzianum is a fungus that has a considerable potential in biomass hydrolysis application due to its elevated cellulolytic activity. Cellulases from Trichoderma reesei have been widely used as model in studies of cellulose breakdown. However, cellulases from Trichoderma harzianum are less-studied enzymes which have not been characterized biophysically and biochemically as yet. CBHI, a cellobiohydrolase I, is the major cellulolytic enzyme produced by Trichoderma sp. and is currently one of the most investigated cellulases for biofuel applications. CBHI hydrolyzes crystalline cellulose to soluble cellobiose units, which turns it into a key enzyme for producing fermentable sugars from biomass. The aim of this work was to purify and characterize the CBHI of Trichoderma harzianum (ThCBHI). We established an efficient purification protocol of ThCBHI, from the homologous expression. The biochemical characterization of ThCBHI showed that the protein has a molecular mass of 66 kDa, a pI of 5,23, and the optimum pH and temperature for its activity are 5,0 and 50 ºC, respectively. The effect of pH and temperature on secondary and tertiary structure and enzymatic activity of ThCBHI were analyzed by CD and Fluorescence spectroscopy and showed that they affect protein stability by two distinct mechanisms. Variations of pH modify protonation of the residues, affecting directly its activity, leading to structural destabilization only at extreme pH values, such as pH 9, 0. On the other hand, temperature has direct influence on mobility, fold and compactness of the folding enzyme, at temperatures above 60 ºC, there is loss of secondary and tertiary structure. When the assays were conducted in the presence of the cellobiose, a competitive inhibitor, thermal stability of ThCBHI was significantly increased to 61,5 to 65,9 ºC. Structural studies and molecular dynamics simulations showed that the flexibility of Tyr260, in comparison to the Tyr247 from the homologous T. reesei CBHI, is enhanced due to the short side chains of adjacent Val216 and Ala384 residues and creates an additional gap at the side face of the catalytic tunnel. In addition, CBHI of T. harzianum has a shortened loop at the entrance of the cellulose-binding tunnel, which has been described to interact with the substrate in T. reesei CBHI. These structural features might explain why T. harzianum enzyme displays higher kcat value and lower product inhibition on both glucosides and lactosides substrates in comparison to T. reesei CBHI.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2012-12-12
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.