• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.55.2016.tde-28072016-142742
Documento
Autor
Nombre completo
Eber Daniel Chuño Vizarreta
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2016
Director
Tribunal
Mencattini, Igor (Presidente)
Brandão, Daniel Smania
Cabrera, Alejandro
Forger, Frank Michael
Jardim, Marcos Benevenuto
Título en portugués
Sobre reticulados de Coxeter-Toda
Palabras clave en portugués
Aplicação do pentagrama
Colchetes de Poisson de Faybusovich-Gekhman
Networks com pesos
Reticulados de Coxeter-Toda
Variedades de Poisson
Resumen en portugués
Esse trabalho visa a investigar a estrutura bi-Hamiltoniana de uma classe de sistemas dinâmicos. Depois de introduzir as ferramentas necessárias, a saber, as noções de variedade de Poisson, de grupo de PoissonLieedenetworknodiscoenoanêl,introduziremosossistemasdinâmicos relevantes nessa dissertação, chamados de reticulados de Coxeter-Toda. Esses sistemas dinâmicos, cujo espaço de fase pode ser identicado com umoportunoquocientedeumacéluladupladeCoxeter-Bruhatdogrupo linear geral, são obtidos por redução do sistema de Toda em GLn. Na parte nal do presente trabalho apresentaremos alguns resultados relacionado à um sistema dinâmico discreto chamado de aplicação do pentagrama, o qual pode ser obtido através uma oportuna discretização do sistema dinâmico de Boussinesq.
Título en inglés
On Coxeter-Toda lattices
Palabras clave en inglés
Coxeter-Toda lattices
Faybusovich-Gekhman Posson brackets
Pentagram map
Poisson manifolds
Weighted networks
Resumen en inglés
This work aims to study the bi-Hamiltonian structure of a class of dynamical systems. After introducing the relevant tools, namely the notions of Poisson manifold, Poisson-Lie group and of network dened in a disc and in an annulus, we will introduce the dynamical systems of interest for this dissertation, i.e., the Coxeter-Toda lattices. These dynamical systems, whose phase-space can be identied with a suitable quotient of a Coxeter double Bruhat cell of the general linear group, are obtained by reduction starting from the Toda ow on GLn. In the nal part of the present work will be presented some results concerning a discrete integrable system close to the so called Pentagram map, which is a discretization of the Boussinesq dynamical system..
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2016-07-28
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2024. Todos los derechos reservados.