• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.55.2017.tde-16112017-101825
Document
Auteur
Nom complet
Junior Soares da Silva
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2017
Directeur
Jury
Mencattini, Igor (Président)
Manzoli Neto, Oziride
Santos, Edivaldo Lopes dos
Vendruscolo, Daniel
Titre en portugais
Introdução à cohomologia de De Rham
Mots-clés en portugais
Cohomologia de Cech
Cohomologia de DeRham
Cohomologia singular
Feixes
Teorema de De Rham
Teoria axiomática de feixes
Resumé en portugais
Começamos definindo a cohomologia clássica de De Rham e provamos alguns resultados que nos permitem calcular tal cohomologia de algumas variedades diferenciáveis. Com o intuito de provar o Teorema de De Rham, escolhemos fazer a demonstração utilizando a noção de feixes, que se mostra como uma generalização da ideia de cohomologia. Como a cohomologia de De Rham não é a única que se pode definir numa variedade, a questão da unicidade dá origem a teoria axiomática de feixes, que nos dará uma cohomologia para cada feixe dado. Mostraremos que a partir da teoria axiomática de feixes obtemos cohomologias, além das cohomologias clássicas de De Rham, a cohomologia clássica singular e a cohomologia clássica de Cech e mostraremos que essas cohomologias obtidas a partir da noção axiomática são isomorfas as definições clássicas. Concluiremos que se nos restringirmos a apenas variedades diferenciáveis, essas cohomologias são unicamente isomorfas e este será o teorema de De Rham.
Titre en anglais
Introduction to De Rham Cohomology
Mots-clés en anglais
Axiomatic sheaf theory
Cech cohomology
De Rham cohomology
De Rham theorem
Sheaves
Singular cohomology
Resumé en anglais
We begin by defining De Rhams classical cohomology and we prove some results that allow us a calculation of the cohomology of some differentiable manifolds. In order to prove De Rhams Theorem, we chose to make a demonstration using a notion of sheaves, which is a generalization of the idea of cohomology. Since De Rhams cohomology is not a only one that can be made into a variety, the question of unicity gives rise to axiomatic theory of sheaves, which give us a cohomology for each sheaf given. We will show that from the axiomatic theory of sheaves we obtain cohomologies, besides the classical cohomologies of De Rham, a singular classical cohomology and a classical cohomology of Cech and we will show that cohomologies are obtained from the axiomatic notion are classic definitions. We will conclude that if we restrict ourselves to only differentiable manifolds, these cohomologies are uniquely isomorphic and this will be De Rhams theorem.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2017-11-16
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2019. Tous droits réservés.