• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2008.tde-12052008-095753
Documento
Autor
Nome completo
Juliano Ribeiro de Oliveira
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2008
Orientador
Banca examinadora
Frasson, Miguel Vinicius Santini (Presidente)
Azevedo, Katia Andreia Gonçalves de
Cruz, José Hilário da
Título em português
Comportamento assintótico para soluções de certas equações diferenciais funcionais periódicas
Palavras-chave em português
Comportamento assintótico
Dominância de autovalores
Equações diferenciais funcionais periódicas
Teoria espectral
Resumo em português
Estamos interessados em estudar o comportamento assintótico das soluções de uma classe de Equações Diferenciais Funcionais (EDF) lineares e autônomas do tipo neutro, onde os coeficientes, na parte não neutra, são funções periódicas de período comum w! e os retardamentos são múltiplos de w. Para isto, utilizamo-nos da teoria espectral de operadores aplicada ao chamado operador monodrômico 'PI' : C 'SETA' C, cuja ação é evoluir um dado estado um passo de tamanho w. Calculamos o resolvente deste operador, donde inferimos todas as propriedades espectrais que nos permitem determinar o comportamento assintótico das soluções. Mostramos a importância de se determinar autovalores dominantes para a obtenção das estimativas, e mostramos resultados neste sentido. Estudamos em detalhe três exemplos que ilustram a teoria e demonstram sua aplicabilidade
Título em inglês
Asymptotic behavior of solutions to certain periodic functional differential equations
Palavras-chave em inglês
Asymptotic behavior
Dominance of eigenvalues
Functional differential equations
Periodic equations
Spectral theory
Resumo em inglês
We are interested in the study of the asymptotic behavior of the solutions of a class of linear autonomous Functional Differential Equations (FDE) of neutral type, where the coeficients of the non neutral part are periodic functions with common period w and the time delays are multiples of w. We employ the spectral theory for linear operators applied to the so called monodromic operator 'PI' : C 'ARROW'! C, whose action is to evolve a given state one step of size w. We compute the resolvent of this operator, from where we infer the spectral properties that allows us to determine the asymptotic behavior of the solutions. We show the importance to determine whether an eigenvalue is dominant, in order to obtain the estimates for the correspondet solution, and we show results in this direction. Finally we study in detail three examples that illustrate the theory and demonstrate its applicability
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
juliano.pdf (462.26 Kbytes)
Data de Publicação
2008-05-12
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.