• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2009.tde-02092009-165147
Documento
Autor
Nome completo
Daniela Peruzzi
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2009
Orientador
Banca examinadora
Oliveira, Regilene Delazari dos Santos (Presidente)
Manoel, Miriam Garcia
Silva, Paulo Ricardo da
Título em português
Estudo dos retratos de fase dos campos de vetores polinomiais quadráticos com integral primeira racional de grau 2
Palavras-chave em português
Campo de vetores quadráticos
Equivalência topológica
Integral primeira racional
Retratos de fase
Resumo em português
Um dos principais problemas na teoria qualitativa das equações diferenciais em dimensão dois é apresentar, para uma dada família de sistemas diferenciais, uma classificação topológica dos retratos de fase de todos os sistemas dessa família. A proposta deste trabalho é estudar a técnica utilizada na classificação dos retratos de fase globais de sistemas diferenciais polinomiais da forma 'dx SUP dt' = P(x,y) 'dy SUP dt = Q(x,y) onde P e Q são polinômios nas variáveis x e y e o máximo entre os graus de P e Q é 2. Para esse fim optamos pelo estudo da referência de Cairó e Llibre [5]. Na presente referência os autores obtém a classificação de todos os retratos de fase globais dos sistemas diferenciais polinomiais que possuem uma integral primeira racional, H, de grau 2. Esse estudo foi dividido em duas etapas. Na primeira, caracterizamos a função H através de seus coeficientes. Na segunda, encontramos todos os retratos de fase globais no disco de Poincaré. Para tais sistemas, existem exatamente 18 retratos de fase no disco de Poincaré, exceto pela reversão do sentido de todas as órbitas ou equivalência topológica
Título em inglês
On the phase portraits of quadratic polynomial vector fields having a rational first integral of degree 2
Palavras-chave em inglês
Phase portrait
Quadratic vector fields
Rational first integral
Topological equivalence
Resumo em inglês
One of the main problems in the qualitative theory of 2-dimensional differential equations is, for a concrete family of differential systems, to describe a topological classification of the phase portraits for all the systems in this family. The purpose of this work is to study a technique used in the classification of global phase portraits of the planar polynomial diferential systems or simply quadratic systems of the form 'dx SUP. dt' = P(x,y) 'dy SUP. dt' = Q(x,y) where P and Q are real polynomials in x and y the maximum degree of P and Q is 2. Our basic reference is the paper of Cairó and Llibre [5]. In that work the authors give the classification of all global phase portraits of the planar quadratic differential systems having a rational first integral H of degree 2. Our work is divided in two parts. In the first part, we characterize the first integral H through its coeficients. In the second one, we describe all global phase portraits in the Poincaré disk. For such systems, there are exactly 18 different phase portraits in the Poincaré disk, up to a reversal of sense of all orbits or topological equivalence
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2009-09-03
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.