• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2008.tde-21012009-151233
Documento
Autor
Nome completo
Matheus Lorenzo dos Santos
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2008
Orientador
Banca examinadora
Mello, Rodrigo Fernandes de (Presidente)
Hruschka, Eduardo Raul
Macedo, Alessandra Alaniz
Título em português
Classificação e detecção de variações de comportamento: uma abordagem aplicada à identificação de perfis de usuários
Palavras-chave em português
Cadeias de Markov
Classificação de comportamento
Entropia
Perfil
Resumo em português
Estudos comportamentais têm sido conduzidos, há séculos, por cientistas e filósofos, abordando assuntos tais como trajetórias de estrelas e planetas, organizações da sociedade, evolução dos seres vivos, comportamento e linguagem humana. Com o advento da computação, grandes quantidades de informação tornaram-se disponíveis, as quais geram novos desafios a fim de explorar e compreender variações comportamentais de interação com esses sistemas. Motivado por esses desafios e pela disponibilidade de informações, esta dissertação de mestrado propõe uma metodologia com objetivo de classificar, detectar e identificar padrões de comportamento. A fim de validar essa metodologia, modelou-se conhecimentos embutidos em informações relativas a interações de usuários durante a grafia digital de assinaturas (tais informações foram obtidas de uma base de dados do campeonato SVC2004 -- First International Signature Verification Competition). Os modelos de conhecimento gerados foram, posteriormente, empregados em experimentos visando o reconhecimento de assinaturas. Resultados obtidos foram comparados a outras abordagens propostas na literatura
Título em inglês
Classification and behavior variation detection: an approach applied to identify user profile
Palavras-chave em inglês
Behavior classification
Entropy
Markov chain
Profile
Resumo em inglês
Throughout the centuries, behavioral studies have been conducted by scientists and philosophers, approaching subjects such as stars and planet trajectories, social organizations, living beings, human behavior and language. With the advent of computer science, large amounts of information have been made available, which brings out new challenges in the interactive behavior context. Such challenges have motivated this master thesis which proposes a methodology to classify, detect and identify behavioral patterns. A digital signature verification database, obtained from the First International Signature Verification Competition (SVC2004), was used to validate the proposed methodology. Knowledge models were obtained and, afterwards, employed in signature verification experiments. Results were compared to other approaches from the literature
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
dissertacao.pdf (4.79 Mbytes)
Data de Publicação
2009-05-21
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.