• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
Documento
Autor
Nome completo
Josmar Mazucheli
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 1995
Orientador
Banca examinadora
Achcar, Jorge Alberto (Presidente)
Andrade, Dalton Francisco de
Diniz, Carlos Alberto Ribeiro
Título em português
ANÁLISE BAYESIANA E DISCRIMINAÇÃO DE MODELOS NÃO LINEARES
Palavras-chave em português
Não disponível
Resumo em português
É comum, em muitas áreas de investigação científica, a existência de vários modelos de regressão não lineares que podem ser usados para elucidar um mesmo fenômeno. Estando o pesquisador diante de vários modelos alternativos, como escolher qual fornece melhor ajuste? Essa é uma questão de interesse aos estatísticos e muitas estratégias clássicas e Bayesianas de discriminação tem sido propostas na literatura. Nesta dissertação, considerando os modelos não lineares de crescimento sigmóide: Logístico, Gompertz, Tipo-Weibull, Morgan-Mercer-Flodin e Richards, apresentamos uma análise Bayesiana e algumas estratégias (clássicas e Bayesianas) que podem ser usadas em problemas de discriminação de modelos alternativos. Sob o ponto de vista clássico, a discriminação é conduzida com base em conceitos de não linearidade, uma vez que o "melhor modelo possível" dentre todos os propostos é aquele que apresenta o comportamento mais próximo do comportamento linear. No contexto Bayesiano, considerando um conjunto de dados, usando uma priori não informativa de Jeffreys, o método de Laplace para aproximar as integrais de interesse e a técnica proposta por Gelfand e Dey (1994) procedemos a discriminação usando as estratégias: Fator de Bayes, critério baseado no conceito de entropia, Pseudo Fator de Bayes e o Fator de Bayes a Posteriori.
Título em inglês
Not available
Palavras-chave em inglês
Not available
Resumo em inglês
It is common in many scientific applications, the existence of different non-linear regression models to be used in the same problem. Therefore, usually the researcher has a question: Which model is preferable? This is a question concemed by many statisticians, and many classical or Bayesian strategies for discrimination have been proposed in the literature. In this work, considering the logistic, Gompertz, Weibull-type, Morgan-Mercer- Flodin and Richards growth non-linear models, we present sorne existing strategies to be used in the discrimination of altemative models. Under the classical approach, the discrimination is based on non-linearity concepts, since the best model among many existing altematives is the one that presents behavior close to linear models. Under the Bayesian approach, considering Jeffreys non informative prior densities end Laplace's method for approximation of integrals, and a general discrimination procedure, (see Gelfand and Dey, 1994), we explore in an example some different discrimination strategies: Bayes Factor, Entropy, Pseudo Factor of Bayes and Posterior Bayes Factor.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
JosmarMazucheli.pdf (88.31 Mbytes)
Data de Publicação
2018-04-18
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.