• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2018.tde-15012018-084442
Documento
Autor
Nome completo
Silvana Aparecida Ceregato de Oliveira
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 1996
Orientador
Banca examinadora
Rodrigues, Josemar (Presidente)
Andrade Filho, Marinho Gomes de
Leite, Jose Galvao
Título em português
ABORDAGEM BAYESIANA PARA PROBLEMAS DE SELECAO E CON- TROLE: APLICACAO EM EXPERIMENTOS E CAPTURA E RECAPTU-RA.
Palavras-chave em português
Não disponível
Resumo em português
Neste trabalho propomos algumas soluções para problemas de seleção e controle introduzidos por Marsh e Zellner (1994). Estudamos soluções ótimas obtidas através de diferentes funções de perda e comparamos tais soluções com a chamada "solução do diretor". Além disso, enfocamos os problemas de controle de uma forma distinta da proposta em Marsh e Zellner, utilizando o conceito de densidade preditiva. Introduzimos o modelo de regressão logística em problemas de seleção e controle com heterogeneidade, obtendo soluções via Inferência Clássica e Inferência Bayesiana Assintótica. Analisamos um conjunto de dados simulados a fim de exemplificar o emprego do modelo de regressão logística em tais problemas. Baseando-nos em Geisser (1982), utilizamos funções de perda e densidade preditiva para obter soluções ótimas para problemas de seleção e controle. Procedemos a uma análise para verificar qual o impacto da função de perda na escolha dos parâmetros da distribuição a priori de O: probabilidade dos indivíduos aceitarem uma oferta para um curso a ser realizado. Na tentativa de solucionar problemas de captura-recaptura através de problemas de controle investigamos um estimador bastante conhecido, o estimador de Petersen (1896) e, através da Inferência Bayesiana, propomos um ajuste para o mesmo, similar às correções de Bartlett (1937). Através de um exemplo com dados simulados é possível verificar que o ajuste melhora sensivelmente as estimativas do tamanho de uma população animal.
Título em inglês
Not available
Palavras-chave em inglês
Not available
Resumo em inglês
In this work we propose some solutions to the problems of selection and control introduced by Marsh and Zellner (1994). Optimal solutions are obtained under different loss functions and compared with the Dean's solution. We also consider the control problems from the predictive density point of view which is quite different from Marsh and Zellner's approach. The logistic regression model is used to solve the selection and control problems with heterogeneity by Classical and Bayesian procedures. We also generate a set of data to illustrate the performance of our proposed procedures. Geisser's predictive approach is used, under different loss functions, to get optimal solutions to the selection and control problems and the influence of these loss functions on the choice of the parameters of the prior distributions is considered. The capture-recapture procedure, when solving as a control problem, the optimal Bayes solution is the well-known Petersen's estimator multiplied by an adjusted factor similar to the Bartlett's correction. An example with simulated data shows how much this adjusted factor improves the estimatives of the population size.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
SilvanaApCeregato.pdf (113.73 Mbytes)
Data de Publicação
2018-01-15
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.