• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2018.tde-14032018-110842
Documento
Autor
Nome completo
Claudia Fernanda Freitas Hutter
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 1998
Orientador
Banca examinadora
Andrade Filho, Marinho Gomes de (Presidente)
Achcar, Jorge Alberto
Hotta, Luiz Koodi
Título em português
Uma Abordagem Bayesiana para Modelos Auto-Regressivos Periódicos - PAR
Palavras-chave em português
Não disponível
Resumo em português
Nesta dissertação de mestrado, apresentamos um estudo dos modelos de séries temporais com componentes sazonais, tais que a medida presente está correlacionada com a medida imediatamente passada e com médias passadas no mesmo ponto de períodos anteriores. Dentro da classe de modelos periódicos, vamos considerar os modelos auto-regressivos periódicos - PAR. Estes modelos são adequados quando a correlação entre os meses variam de forma periódica, estas séries são ditas periodicamente estacionárias. Na análise Clássica a identificação do modelo é feita através da função de autocorrelação periódica, PeFAC e função de autocorrelação parcial periódica, PeFACP, a escolha do melhor modelo é feita usando-se o Critério de Informação Bayesiano, BIC, apresentamos ainda um teste estatístico para verificar a periodicidade na função de autocorrelação. Na análise Bayesiana consideramos três alternativas de densidades a priori para os parâmetros. A densidade preditiva é usada na escolha do melhor modelo e para fazer previsões um passo a frente de valores Muros da série usando resultados da simulaçãO em Cadeia de Markov, MCMC. Exploramos ainda o uso dos algoritmos de MCMC para estimar as densidade a posteriori marginais dos parâmetros do modelo. A metodologia desenvolvida neste trabalho é exemplificada com conjuntos de dados reais e simulados.
Título em inglês
Not available
Palavras-chave em inglês
Not available
Resumo em inglês
In this work we present a Bayesian approch seasonal time series using periodical autoregressive models PAR. In the Classical model order was estimated by periodical autocorrelation PeACF and periodical pardal autocorrelation funcition PePACF. The parsimonious model was chosen by Bayesian Information Criterios (BIC). In this work we present also a test of hypothesis for periodicity of the autocorrelation function. The Bayesian. approach in this work was made using three priori density function, Non- Informative priori, conjugate priori Normal-Gama and t-Student times Gama priori. The forecast was made by simulation of Monte Cano Markow rhain. For model selection we could consider the predictive for the futures values.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2018-03-14
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.