• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.55.2008.tde-08062009-103951
Documento
Autor
Nome completo
Rodrigo Elias Bianchi
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2008
Orientador
Banca examinadora
Carvalho, André Carlos Ponce de Leon Ferreira de (Presidente)
Fernandez, Francisco Javier Ramirez
Liang, Zhao
Oliveira, Pedro Paulo Balbi de
Silva, Ivan Nunes da
Título em português
Extração de conhecimento simbólico em técnicas de aprendizado de máquina caixa-preta por similaridade de rankings
Palavras-chave em português
Aprendizado de máquina
Extração de conhecimento
Extração de regras
Máquinas de vetores suporte
Redes neurais
Resumo em português
Técnicas de Aprendizado de Máquina não-simbólicas, como Redes Neurais Artificiais, Máquinas de Vetores de Suporte e combinação de classificadores têm mostrado um bom desempenho quando utilizadas para análise de dados. A grande limitação dessas técnicas é a falta de compreensibilidade do conhecimento armazenado em suas estruturas internas. Esta Tese apresenta uma pesquisa realizada sobre métodos de extração de representações compreensíveis do conhecimento armazenado nas estruturas internas dessas técnicas não-simbólicas, aqui chamadas de caixa preta, durante seu processo de aprendizado. A principal contribuição desse trabalho é a proposta de um novo método pedagógico para extração de regras que expliquem o processo de classificação seguido por técnicas não-simbólicas. Esse novo método é baseado na otimização (maximização) da similaridade entre rankings de classificação produzidos por técnicas de Aprendizado de Máquina simbólicas e não simbólicas (de onde o conhecimento interno esta sendo extraído). Experimentos foram realizados com vários conjuntos de dados e os resultados obtidos sugerem um bom potencial para o método proposto
Título em inglês
Symbolic knowledge extraction from black-box machine learning techniques with ranking similarities
Palavras-chave em inglês
Knowledge extraction
Machine learning
Neural networks
Rule extraction
Support vector machines
Resumo em inglês
Non-symbolic Machine Learning techniques, like Artificial Neural Networks, Support Vector Machines and Ensembles of classifiers have shown a good performance when they are used in data analysis. The strong limitation regarding the use of these techniques is the lack of comprehensibility of the knowledge stored in their internal structure. This Thesis presents an investigation of methods capable of extracting comprehensible representations of the knowledge acquired by these non-symbolic techniques, here named black box, during their learning process. The main contribution of this work is the proposal of a new pedagogical method for rule extraction that explains the classification process followed by non-symbolic techniques. This new method is based on the optimization (maximization) of the similarity between classification rankings produced by symbolic and non-symbolic (from where the internal knowledge is being extracted) Machine Learning techniques. Experiments were performed for several datasets and the results obtained suggest a good potential of the proposed method
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
ThesisBianchi.pdf (1.41 Mbytes)
Data de Publicação
2009-06-08
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.