• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2006.tde-07112006-080351
Documento
Autor
Nome completo
Murilo Coelho Naldi
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2006
Orientador
Banca examinadora
Carvalho, André Carlos Ponce de Leon Ferreira de (Presidente)
Liang, Zhao
Nicoletti, Maria do Carmo
Título em português
Agrupamento híbrido de dados utilizando algoritmos genéticos
Palavras-chave em português
Algoritmos de agrupamento
Algoritmos evolutivos
Computação bioinspirada
Sistemas híbridos
Resumo em português
Técnicas de Agrupamento vêm obtendo bons resultados quando utilizados em diversos problemas de análise de dados, como, por exemplo, a análise de dados de expressão gênica. Porém, uma mesma técnica de agrupamento utilizada em um mesmo conjunto de dados pode resultar em diferentes formas de agrupar esses dados, devido aos possíveis agrupamentos iniciais ou à utilização de diferentes valores para seus parâmetros livres. Assim, a obtenção de um bom agrupamento pode ser visto como um processo de otimização. Esse processo procura escolher bons agrupamentos iniciais e encontrar o melhor conjunto de valores para os parâmetros livres. Por serem métodos de busca global, Algoritmos Genéticos podem ser utilizados durante esse processo de otimização. O objetivo desse projeto de pesquisa é investigar a utilização de Técnicas de Agrupamento em conjunto com Algoritmos Genéticos para aprimorar a qualidade dos grupos encontrados por algoritmos de agrupamento, principalmente o k-médias. Esta investigação será realizada utilizando como aplicação a análise de dados de expressão gênica. Essa dissertação de mestrado apresenta uma revisão bibliográfica sobre os temas abordados no projeto, a descrição da metodologia utilizada, seu desenvolvimento e uma análise dos resultados obtidos.
Título em inglês
Hybrid clustering techniques with genetic algorithms
Palavras-chave em inglês
Bio inspired computation
Clustering algorithms
Evoutionary algorithms
Hybrid systems
Resumo em inglês
Clustering techniques have been obtaining good results when used in several data analysis problems, like, for example, gene expression data analysis. However, the same clustering technique used for the same data set can result in different ways of clustering the data, due to the possible initial clustering or the use of different values for the free parameters. Thus, the obtainment of a good clustering can be seen as an optimization process. This process tries to obtain good clustering by selecting the best values for the free parameters. For being global search methods, Genetic Algorithms have been successfully used during the optimization process. The goal of this research project is to investigate the use of clustering techniques together with Genetic Algorithms to improve the quality of the clusters found by clustering algorithms, mainly the k-means. This investigation was carried out using as application the analysis of gene expression data, a Bioinformatics problem. This dissertation presents a bibliographic review of the issues covered in the project, the description of the methodology followed, its development and an analysis of the results obtained.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Murilo.pdf (1.59 Mbytes)
Data de Publicação
2006-11-08
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.