• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2011.tde-05052011-143134
Documento
Autor
Nome completo
Pablo Andretta Jaskowiak
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2011
Orientador
Banca examinadora
Campello, Ricardo José Gabrielli Barreto (Presidente)
Costa Filho, Ivan Gesteira
Lopes, Alneu de Andrade
Título em português
Estudo de coeficientes de correlação para medidas de proximidade em dados de expressão gênica
Palavras-chave em português
Agrupamento de amostras
Agrupamento de genes
Classificação de amostras
Coeficientes de correlação
Expressão gênica
Medidas de proximidade
Seleção de genes
Resumo em português
O desenvolvimento da tecnologia de microarray tornou possível a mediçao dos níveis de expressão de centenas ou até mesmo milhares de genes simultaneamente para diversas condições experimentais. A grande quantidade de dados disponível gerou a demanda por métodos computacionais que permitam sua análise de forma eficiente e automatizada. Em muitos dos métodos computacionais empregados durante a análise de dados de expressão gênica é necessária a escolha de uma medida de proximidade apropriada entre genes ou amostras. Dentre as medidas de proximidade disponíveis, coeficientes de correlação têm sido amplamente empregados, em virtude da sua capacidade em capturar similaridades entre tendências das sequências numéricas comparadas (genes ou amostras). O presente trabalho possui como objetivo comparar diferentes medidas de correlação para as três principais tarefas envolvidas na análise de dados de expressão gênica: agrupamento, seleção de atributos e classificação. Dessa forma, é apresentada nesta dissertação uma visão geral da análise de dados de expressão gênica e das diferentes medidas de correlação consideradas para tal comparação. São apresentados também resultados empíricos obtidos a partir da comparação dos coeficientes de correlação para agrupamento de genes, agrupamento de amostras, seleção de genes para o problema de classificação de amostras e classificação de amostras
Título em inglês
A study of correlation coefficients as proximity measures for gene expression data
Palavras-chave em inglês
Correlation coefficients
Gene clustering
Gene expression
Gene selection
Proximity measures
Sample classification
Sample clustering
Resumo em inglês
The development of microarray technology made possible the expression level measurement of hundreds or even thousands of genes simultaneously for various experimental conditions. The huge amount of available data generated the need for computational methods that allow its analysis in an effcient and automated way. In many of the computational methods employed during gene expression data analysis the choice of a proximity measure is necessary. Among the proximity measures available, correlation coefficients have been widely employed because of their ability to capture similarity trends among the compared numeric sequences (genes or samples). The present work has as objective to compare different correlation measures for the three major tasks involved in the analysis of gene expression data: clustering, feature selection and classification. To this extent, in this dissertation an overview of gene expression data analysis and the different correlation measures considered for this comparison are presented. In the present work are also presented empirical results obtained from the comparison of correlation coefficients for gene clustering, sample clustering, gene selection for sample classification and sample classification
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2011-05-11
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.