• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2018.tde-02102018-170659
Documento
Autor
Nome completo
Mariano Martinez Espinosa
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 1993
Orientador
Banca examinadora
Achcar, Jorge Alberto (Presidente)
Rodrigues, Josemar
Wechsler, Sergio
Título em português
USO DE MÉTODOS BAYESIANOS NAS INFERÊNCIAS PARA A DISTRIBUIÇÃO DE BIRNBAUM-SAUNDERS
Palavras-chave em português
Não disponível
Resumo em português
Um dos grandes problemas na área industrial é a ruptura ou falha dos materiais. As falhas são ocasionadas por diversas causas. Uma destas causas é dada por fadiga. A fadiga é a falha estrutural que resulta quando o material é submetido a diferentes esforços dinâmicos repetidos ou flutuantes (STRESS). Um modelo sobre fadiga de materiais muito utilizado na área industrial é dado pela distribuição de Birnbaum-Saunders. Nesta dissertação, realizamos urna análise Bayesiana para o modelo da distribuição de Birnbaum-Saunders, e para o modelo Log-Linear da distribuição de Birnbaum- Saunders, considerando priori não-informativas diferentes. No modelo Log-Linear da distribuição de Birnbaum-Saunders também consideramos priori informativas. Em ambos os casos encontramos fórmulas simples para as densidades a posteriori marginais e densidades preditivas de interesse, utilizando o método de LAPLACE para integrais, quando não podemos encontrar soluções explícitas. A metodologia Bayesiana permite aplicações práticas na caracterização de materiais. Tais caracterizações são importantes para prever o desempenho do material sob condições diferentes. Para mostrar a aplicação da metodologia Bayesiana consideramos três exemplos numéricos.
Título em inglês
Not avalable
Palavras-chave em inglês
Not available
Resumo em inglês
A great industrial problem is related to failures of materiais. The failures are related to different causes. One of these causes is given by fatigue. Fatigue is the structural failure resulting from different cyclic loading (Stress). A fatigue model used in the industrial applications is given by the Birnbaum-Saunders distribution. In this work, we present a Bayesian analysis for the Birnbaum-Saunders distribution, and for a Log-Linear model with the Birnbaum-Saunders distribution considering different non informative priors. In the Log-Linear model of the Birnbaum-Saunders distribution, we also consider informative prior densities. In both cases we find simple expressions for the marginal posterior densities and predictive densities of interest, by using Laplace's method for approximation of integrais, when we can not find explieitly solUtions. The Bayesian approach allows us practical applications in the characterization of materiais. These characterizations are important to predict the performance of material under different use conditions. To illustrate the proposed Bayesian methodology, we consider some numerical examples.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2018-10-02
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.