• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.5.2007.tde-19022009-113657
Documento
Autor
Nome completo
Letícia Maria Silva Coutinho
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2007
Orientador
Banca examinadora
Castilho, Euclides Ayres de (Presidente)
Barros, Aluisio Jardim Dornellas de
Lotufo, Paulo Andrade
Título em português
Comparação empírica dos modelos Cox, log-binominal e Poisson para estimar razões de prevalência
Palavras-chave em português
Distribuição de Poisson
Estudos transversais
Modelos logísticos
Razão de prevalências
Resumo em português
Introdução: Em estudos de corte transversal com desfechos binários, a associação entre a exposição e o desfecho é estimada pela razão de prevalência (RP). Os modelos de regressão de Cox, log-binomial e Poisson têm sido sugeridos como bons métodos estatísticos para obter estimativas da RP ajustadas para variáveis de confusão. Objetivo: Comparar empiricamente as regressões de Cox, log-binomial, Poisson e logística para desfechos com alta prevalência, prevalência intermediária e baixa prevalência. Metodologia: Os dados foram obtidos de um estudo epidemiológico de corte transversal, de base populacional, sobre prevalência de demência e outros transtornos mentais em idosos residentes em aéreas de baixa renda da cidade de São Paulo. O diagnóstico de demência (prevalência baixa), a ocorrência de transtorno mental comum (prevalência intermediária) e a auto-percepção de saúde ruim (alta prevalência) foram escolhidos como desfechos para o estudo. Valores de referência da estimativa da razão de prevalência (RP) foram obtidos pela estratificação de Mantel-Haenszel. Estimativas da RP ajustada foram calculadas usando modelos de regressão de Cox, log-binomial e Poisson, além do OR bruto e do OR ajustado pela regressão logística. Resultados: As estimativas do ponto e do intervalo obtidas com as regressões de Poisson e Cox, com variância robusta, se aproximaram muito bem dos resultados obtidos pela estratificação de Mantel-Haenszel, independentemente da prevalência inicial do desfecho, e permitiram controlar para covariáveis contínuas. O modelo log-binomial se comportou ligeiramente pior que os modelos de Cox e Poisson quando o desfecho teve uma prevalência alta, com dificuldade de convergência. A regressão logística produziu estimativas do ponto e do intervalo sempre mais elevadas do que aquelas obtidas pelos outros métodos, e estas estimativas eram particularmente mais elevadas quando o desfecho era freqüente. Conclusão: Os modelos de regressão de Cox e Poisson, com variância robusta, são boas alternativas à regressão logística. Quanto ao modelo de regressão log-binomial, deve-se ficar atento às restrições referentes ao seu uso, pois apresenta estimativas um pouco mais distantes das geradas pelos demais métodos quando o risco inicial do desfecho de interesse é alto e apresenta também dificuldade de convergência quando temos uma covariável contínua no modelo. Ao analisar as associações em estudos de corte-transversal, os pesquisadores devem usar métodos de regressão que forneçam estimativas do ponto e do intervalo adequadas independente da prevalência do desfecho em estudo.
Título em inglês
Empirical comparison of Cox, log-binomial and Poisson models for estimating prevalence ratios
Palavras-chave em inglês
Cross-sectional studies
Logistic models
Poisson distribution
Prevalence ratio
Resumo em inglês
Introduction: In cross-sectional studies with binary outcomes, the association between exposure and outcome is estimated with the prevalence ratio (PR). Cox, log-binomial and Poisson regression models have been suggested as statistical methods that yield correct estimates of PR adjusted for confounding variables. Aim: To compare empirically Cox, log-binomial, Poisson and logistic regressions for outcomes with low, intermediate and high prevalence. Methodology: The data came from an epidemiologic population-based cross-sectional study about prevalence of dementia and other mental health problems among older persons from an economically deprived area in the city of Sao Paulo. The diagnosis of dementia (low prevalence), caseness for common mental disorders (intermediate prevalence) and poor self-rated health (high prevalence) were chosen as outcomes of the study. Reference values for point and interval estimates of PR were obtained with the Mantel-Haenszel stratification. Adjusted estimates of PR were then calculated using Cox, log-binomial and Poisson regression models. Crude and adjusted Odds Ratios (OR) were obtained with logistic regression. Results: The point and interval estimates obtained with Poisson and Cox regressions, with robust variance, approximated very well to those obtained with Mantel-Haenszel stratification, independently of the outcome base prevalence, and allowed to control for continuous covariates. The log-binomial model performed slightly worse than the Poisson and Cox models when the outcome had a high prevalence, with difficulty in convergence. Logistic regression produced point and interval estimates that were always higher than those obtained by the other methods, and were particularly higher when the outcome was frequent. Conclusion: The Cox and Poisson models, with robust variance, are good alternatives to logistic regression. Regarding the log-binomial regression model, it is necessary to be alert to restrictions in its use, since it may yield estimates slightly different from those generated by the others methods when the outcome has a high prevalence and also presents difficulty in convergence with the continuous covariate in the model. When analyzing associations in cross-sectional studies, investigators should use regression methods that yield adequate point and interval estimates regardless of the base prevalence of the outcome investigated
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
LeticiamsCoutinho.pdf (401.26 Kbytes)
Data de Publicação
2009-03-27
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.