• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.45.2008.tde-16062008-211538
Documento
Autor
Nome completo
Fernando Taietti Camargo
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2008
Orientador
Banca examinadora
Birgin, Ernesto Julian Goldberg (Presidente)
Ribeiro, Celma de Oliveira
Stern, Julio Michael
Título em português
Estudo comparativo de passos espectrais e buscas lineares não monótonas
Palavras-chave em português
busca linear não monótona.
minimização em conjuntos convexos
minimização irrestrita
passo espectral
Resumo em português
O método do Gradiente Espectral, introduzido por Barzilai e Borwein e analisado por Raydan, para minimização irrestrita, é um método simples cujo desempenho é comparável ao de métodos tradicionais como, por exemplo, gradientes conjugados. Desde a introdução do método, assim como da sua extensão para minimização em conjuntos convexos, foram introduzidas várias combinações de passos espectrais diferentes, assim como de buscas lineares não monótonas diferentes. Dos resultados numéricos apresentados em vários trabalhos não é possível inferir se existem diferenças significativas no desempenho dos diversos métodos. Além disso, também não fica clara a relevância das buscas não monótonas como uma ferramenta em si próprias ou se, na verdade, elas são úteis apenas para permitir que o método seja o mais parecido possível com o método original de Barzilai e Borwein. O objetivo deste trabalho é comparar os diversos métodos recentemente introduzidos como combinações de diferentes buscas lineares não monótonas e diferentes passos espectrais para encontrar a melhor combinação e, a partir daí, aferir o desempenho numérico do método.
Título em inglês
Comparative study of spectral steplengths and nonmonotone linear searches
Palavras-chave em inglês
minimization in convex sets
nonmonotone line search.
spectral steplength
unconstrained minimization
Resumo em inglês
The Spectral Gradient method, introduced by Barzilai and Borwein and analized by Raydan for unconstrained minimization, is a simple method whose performance is comparable to traditional methods, such as conjugate gradients. Since the introduction of method, as well as its extension to minimization of convex sets, there were introduced various combinations of different spectral steplengths, as well as different nonmonotone line searches. By the numerical results presented in many studies it is not possible to infer whether there are siginificant differences in the performance of various methods. It also is not sure the relevance of the nonmonotone line searches as a tool in themselves or whether, in fact, they are usefull only to allow the method to be as similar as possible with the original method of Barzilai e Borwein. The objective of this study is to compare the different methods recently introduced as different combinations of nonmonotone linear searches and different spectral steplengths to find the best combination and from there, evaluating the numerical performance of the method.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
dissertacao.pdf (370.92 Kbytes)
Data de Publicação
2008-07-22
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2014. Todos os direitos reservados.