• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.45.2012.tde-05062012-150618
Documento
Autor
Nome completo
Tales Pinheiro de Andrade
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2012
Orientador
Banca examinadora
Hashimoto, Ronaldo Fumio (Presidente)
Oliveira Filho, Evaldo Araújo de
Rozante, Luiz Carlos da Silva
Título em português
Interações gênicas usando redes booleanas limiarizadas modeladas como um problema de satisfação de restrições
Palavras-chave em português
Constraint Satisfaction Problem
CSP
Inferência de redes gênicas
Problema de Satisfação de Restrições
redes gênicas
Resumo em português
As reações químicas que resultam da expressão de genes são complexas e ainda não são total- mente compreendidas. Sabe-se que os genes enviam, recebem, e processam informações formando uma complexa rede de comunicação, mas a arquitetura e dinâmica destas redes não são totalmente conhecidas. Dessa forma, um problema importante é determinar como os genes se relacionam dentro da célula. Esse processo de determinar o relacionamento entre os genes é conhecido como inferência de redes gênicas. Uma das formas para representar o relacionamento entre os genes é usar modelos matemáticos e computacionais de Redes Gênicas. Em especial, um dos modelos de grande interesse é o de Redes Booleanas (BN - do inglês Boolean Networks), no qual os genes podem assumir dois estados, ativo ou inativo, se estão, respectivamente, expressos ou não. Estes estados podem variar ao longo do tempo, dependendo de como os genes se relacionam. Nosso interesse está em estudar um caso particular deste modelo, conhecido como Redes Booleanas Limiarizadas, onde apenas uma classe de funções booleanas é utilizada para construir as BNs. Para inferir as Redes Booleanas Limiarizadas, usamos um algoritmo constituído de dois passos. Primeiro, usamos o arcabouço do Problema de Satisfação de Restrições (CSP - do inglês Constraint Satisfaction Problem) para inferir conjuntos de soluções consistentes com uma dada série temporal de um conjunto de genes. Em seguida analisamos o comportamento dinâmico das soluções encon- tradas , filtrando conjuntos de soluções de maior interesse para testes práticos em laboratório. Usando o arcabouço do CSP, construímos um solver, usando a biblioteca Gecode,1 para inferência de redes consistentes, usando como entrada uma série temporal oriunda de dados de microarrays. Em seguida, através da simulação da dinâmica de uma amostra das redes encontradas no passo anterior, fomos capazes de determinar algumas restrições interessantes para filtrar o conjunto de redes. Aplicamos o nosso método para três conjuntos de dados: dois artificiais, e para validação, usamos uma série temporal de uma rede artificial conhecida na literatura. Com isso fomos capazes de inferir conjuntos de redes gênicas de possível interesse para testes em laboratório.
Título em inglês
Gene interactions using thresholded boolean networks modeled as a constraint satsfaction problem
Palavras-chave em inglês
Boolean networks
CSP
Inference of genetic networks
Resumo em inglês
The chemical reactions that result in gene expression are complex and not yet fully understood. It is known that genes send, receive and process information to form a complex network of com- munication, but the architecture and dynamics of these networks are not fully known. Thus, one major problem is to determine how genes are linked within the cell. This process of determining the relationship between genes is known as inference of genetic networks. One way to represent the relationship between genes is to use mathematical and computer models of genetic networks. In particular, one of the models of great interest are Boolean Networks (BN), in which genes can take two states, active or inactive, if they are, respectively, expressed or not. These states may vary over time, depending on how genes are related. Our interest is in studying a case of this particular model, known as thresholded Boolean networks, where only one class of Boolean functions is used to build the GNs. To infer the thresholded Boolean networks, we use an algorithm that consists of two steps. First, we use the framework of Constraint Satisfaction Problem (CSP) to infer sets of solutions consistent with a time series of a given set of genes. Then analyze the dynamic behavior of the solutions, filtering sets of solutions with interest for practical tests in the laboratory. Using the framework of the CSP, we constructed a solver, using the library Gecode, 2 for in- ference of consistent networks, using as input a time series arising from microarrays data. Then, by simulating the dynamics of a sample of networks found in the previous step, we were able to determine some interesting constraints to filter the set of networks. We apply our method to three datasets: two artificial, and for validation, we use a time series of an artificial network known from literature. Thus we were able to infer genetic networks sets of possible interest for laboratory tests.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2012-06-11
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2014. Todos os direitos reservados.