• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.45.2008.tde-27102008-101711
Documento
Autor
Nome completo
Rogério de Faria Porto
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2008
Orientador
Banca examinadora
Morettin, Pedro Alberto (Presidente)
Lopes, Sílvia Regina Costa
Pinheiro, Aluísio de Souza
Toloi, Clélia Maria de Castro
Zandonade, Eliana
Título em português
Regressão não-paramétrica com erros correlacionados via ondaletas.
Palavras-chave em português
autocorrelação
erros em séries temporais
estimação semi-paramética
lifting
ondaletas
ondaletas adaptativas
ondaletas deformadas
regressão não-paramétrica
Resumo em português
Nesta tese, são obtidas taxas de convergência a zero, do risco de estimação obtido com regressão não-paramétrica via ondaletas, quando há erros correlacionados. Quatro métodos de regressão não-paramétrica via ondaletas, com delineamento desigualmente espaçado são estudados na presença de erros correlacionados, oriundos de processos estocásticos. São apresentadas condições sobre os erros e adaptações aos procedimentos necessárias à obtenção de taxas de convergência quase minimax, para os estimadores. Sempre que possível são obtidas taxas de convergência para os estimadores no domínio da função, sob condições bastante gerais a respeito da função a ser estimada, do delineamento e da correlação dos erros. Mediante estudos de simulação, são avaliados os comportamentos de alguns métodos propostos quando aplicados a amostras finitas. Em geral sugere-se usar um dos procedimentos estudados, porém aplicando-se limiares por níveis. Como a estimação da variância dos coecientes de detalhes pode ser problemática em alguns casos, também se propõe um procedimento iterativo semi-paramétrico geral para métodos que utilizam ondaletas, na presença de erros em séries temporais.
Título em inglês
Non-parametric regression with correlated errors using wavelets
Palavras-chave em inglês
autocorrelation
design-adapted wavelets
lifting
non-parametric regression
semi-parametric estimation
time-series errors
warped wavelets
wavelets
Resumo em inglês
In this thesis, rates of convergence to zero are obtained for the estimation risk, for non-parametric regression using wavelets, when the errors are correlated. Four non-parametric regression methods using wavelets, with un-equally spaced design are studied in the presence of correlated errors, that come from stochastic processes. Conditions on the errors and adaptations to the procedures are presented, so that the estimators achieve quasi-minimax rates of convergence. Whenever is possible, rates of convergence are obtained for the estimators in the domain of the function, under mild conditions on the function to be estimated, on the design and on the error correlation. Through simulation studies, the behavior of some of the proposed methods is evaluated, when used on finite samples. Generally, it is suggested to use one of the studied methods, however applying thresholds by level. Since the estimation of the detail coecients can be dicult in some cases, it is also proposed a general semi-parametric iterative procedure, for wavelet methods in the presence of time-series errors.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
teseportorf.pdf (1.46 Mbytes)
Data de Publicação
2008-12-11
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.