• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
Documento
Autor
Nome completo
Esther Yanfei Jin
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2017
Orientador
Banca examinadora
Chiann, Chang (Presidente)
Sáfadi, Thelma
Toloi, Clelia Maria de Castro
Título em português
Estrutura de vizinhanças espaciais nos modelos autorregressivos e de médias móveis espaço-temporais STARMA
Palavras-chave em português
Espaço-temporais
Exponenciais
Matrizes
Pesos espaciais
Séries temporais
STARMA
Vizinhanças
Resumo em português
O objetivo deste trabalho é comparar as estruturas de vizinhanças espaciais ou matrizes de pesos espaciais da classe de modelos autorregressivos e de médias móveis espaço-temporais (STARMA). O modelo STARMA é empregado para descrever dados de séries temporais espacialmente localizados, ele é caracterizado pela dependência linear defasada tanto no espaço quanto no tempo. Foram realizadas simulações utilizando vários modelos de covariância espaço-temporal para comparar diferentes estruturas de construção da matriz de pesos espaciais com a finalidade de identificar a melhor matriz. As matrizes espaciais com pesos exponenciais apresentaram os melhores desempenhos de ajuste dos modelos STAR; e mostram uma estabilidade em relação à medida de ajuste. Por fim para ilustração, será ajustado um modelo STARMA para um conjunto de dados mensais do índice FIPEZAP de preço imobiliário de venda para apartamentos de dois dormitórios de seis cidades metropolitanas de São Paulo.
Título em inglês
Spatial neighborhood structures in space-time autoregressive and moving average models STARMA
Palavras-chave em inglês
Exponential
Matrices
Neighborhoods
Space-time
Spatial weights
STARMA
Time series
Resumo em inglês
The objective of this work is to compare spatial neighborhoods structures, or the same as spatial weights matrices of the class of space-time autoregressive and moving average models STARMA. The STARMA model is used to describe spatially localized time series datas, it is characterized by the linear dependence lagged both in space and time. Simulations were performed using several space-time covariance models to compare different structures of construction of the weight matrix with the purpose of identifying the best matrix. The spatial matrices with exponential weights presented the best adjustment performances of the STAR models ans showed a stability in relation to the adjustment measure. Finally, for illustration, a STARMA model will be adjusted for a set of monthly data of the FIPEZAP real estate price index for two bedroom apartments in six metropolitan cities of São Paulo.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2017-09-05
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2014. Todos os direitos reservados.