• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
Documento
Autor
Nome completo
Rafael Oliveira Silva
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2019
Orientador
Banca examinadora
Branco, Marcia D Elia (Presidente)
Farias, Rafael Braz Azevedo
Franco, Glaura da Conceição
Título em português
Filtro de Kalman Ensemble: uma análise da estimação conjunta dos estados e dos parâmetros
Palavras-chave em português
Estimação conjunta
Filtro de Kalman Ensemble
Modelo de produção excedente logístico
Resumo em português
O Filtro de Kalman Ensemble (EnKF) é um algoritmo de Monte Carlo sequencial para inferência em modelos de espaço de estados lineares e não lineares. Este filtro combinado com alguns outros métodos propaga a distribuição a posteriori conjunta dos estados e dos parâmetros ao longo do tempo. Existem poucos trabalhos que consideram o problema da estimação simultânea dos estados e parâmetros, e os métodos existentes possuem limitações. Nesta dissertação analisamos a eficiência desses métodos por meio de estudos de simulação em modelos de espaço de estados lineares e não lineares. O problema de estimação não linear aqui tratado refere-se ao modelo de produção excedente logístico, para o qual o EnKF pode ser considerado uma possível alternativa aos algoritmos MCMC. Os resultados da simulação revelam que a acurácia das estimativas aumenta quando a série temporal cresce, mas alguns parâmetros apresentam problemas na estimação.
Título em inglês
Ensemble Kalman filter: an analysis of the joint estimation of states and parameters
Palavras-chave em inglês
Ensemble Kalman filter
Joint estimation
Logistic surplus-production model
Resumo em inglês
The Ensemble Kalman Filter (EnKF) is a sequential Monte Carlo algorithm for inference in linear and nonlinear state-space models. This filter combined with some other methods propagates the joint posterior distribution of states and parameters over time. There are fewer papers that consider the problem of simultaneous state-parameter estimation and existing methods have limitations. The purpose of this dissertation is to analyze the efficiency of these methods by means of simulation studies in linear and nonlinear state-space models. The nonlinear estimation problem addressed here refers to the logistic surplus-production model, for which the EnKF can be considered as a possible alternative to MCMC algorithms. The simulation results reveal that the accuracy of the estimates increases when the time series grows, but some parameters present problems in the estimation.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Dissert_ROS_ENKF.pdf (2.00 Mbytes)
Data de Publicação
2019-05-28
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.