• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.45.2014.tde-07112014-152249
Documento
Autor
Nome completo
Luiz Henrique Pereira Pêgas
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2014
Orientador
Banca examinadora
Forger, Frank Michael (Presidente)
Bursztyn, Henrique
Hoefel, Eduardo Outeiral Correa
Mariano, Hugo Luiz
Struchiner, Ivan
Título em português
Grupoides de Lie e o teorema de Noether na formulação lagrangiana da teoria clássica de campos
Palavras-chave em português
grupoides
simetrias
teoria clássica de campos
Resumo em português
O objetivo desta tese é oferecer um arcabouço que permita a modelagem de simetrias em fibrados suaves, que possuam um bom comportamento local. Para tanto, usa-se ferramentas de grupoides de Lie e correlatas, com a finalidade de reduzir, quando possível, simetrias dadas pela ação de um grupo diferenciável, possivelmente de dimensão infinita, sobre um fibrado suave, a problemas em dimensão finita. Uma definição de invariância de uma forma diferencial, definida no espaço total de um fibrado suave, sob a ação de um grupoide de Lie, é apresentada e desenvolvida. A seguir, discute-se estas ferramentas no contexto da formulação lagrangiana da teoria clássica de campos com o objetivo de descrever, simultaneamente, simetrias internas e no espaço-tempo, de maneira unificada. Obtém-se então, nesta linguagem, alguns objetos de estudo centrais da teoria, como os teoremas de Noether e, no caso das teorias de calibre, os teoremas de acoplamento mínimo e Utiyama. Por fim, discute-se brevemente o caso de simetrias a menos de elementos de contato e divergências totais.
Título em inglês
Lie groupoids and Noether's theorem in the Lagrangian formalism of classical field theory
Palavras-chave em inglês
classical field theory
groupoids
symmetries
Resumo em inglês
The aim of this thesis is to provide a framework that allows the modelling of symmetries in smooth fibre bundles which have good local behaviour. For that, we use Lie groupoids and related tools in order to reduce, whenever possible, symmetries given by the action of a possibly infinite dimensional differentiable group on a smooth fibre bundle to finite dimensional problems. We give a definition of invariance of a differential form, defined on the total space of a fibre bundle, by the action of a Lie groupoid. Then, we discuss these tools in the case of a Lagrangian classical field theory to describe internal and space-time symmetries simultaneously, in a unified way. With this language, we get some central objects of the theory such as Noether's theorems and, in the case of gauge theories, the minimal coupling and Utiyama's theorems. Lastly, we briefly discuss the case of symmetries up to contact elements and a total divergence.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2015-01-05
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.