• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.45.2015.tde-30082015-180119
Documento
Autor
Nome completo
Bartira Maués
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2015
Orientador
Banca examinadora
Junqueira, Lucia Renato (Presidente)
Franco Filho, Antonio de Padua
Silva, Samuel Gomes da
Título em português
Uma introdução à Cp (X)
Palavras-chave em português
Convergência pontual
Espaço das funções contínuas
l-equivalência e t-equivalência
Lindelöf em Cp
Teoremas de dualidade
Resumo em português
Neste trabalho estudamos algumas propriedades do espaço das funções contínuas munido da topologia da convergência pontual. Começamos estudando o espaço Cp(X) de forma geral, verificando que propriedades topológicas principais valem em Cp(X), usando teoremas de dualidade entre X e Cp(X). Em seguida estudamos a relação da estrutura topológica de X e a estrutura algébrica e topológica de Cp(X), onde o Teorema de Nagata é fundamental. Observamos algumas propriedades de X que são preservadas por l-equivalência ou t-equivalência, ou seja, que são determinadas pela estrutura linear topológica, ou pela estrutura topológica de Cp(X), respectivamente. Por último estudamos as condições para que Cp(X) seja um espaço de Lindelöf. Concluímos com a prova de Okunev de que o número de Lindelöf de Cp(X) é igual ao número de Lindelöf de Cp(X)xCp(X), para espaços fortemente zero-dimensionais X.
Título em inglês
An introduction on Cp(X)
Palavras-chave em inglês
Duality theorems
l-equivalence and t-equivalence
Lindelöf in Cp
Pointwise convergence
Space of continuous functions
Resumo em inglês
In this work we study some properties of the space of continuous functions endowed with the topology of pointwise convergence. We begin by studying the space Cp(X) in general terms, verifying that the main topological properties are valid in Cp(X), using duality theorems between X and Cp(X). Next we study the relationship between the topological structure of X and the algebraic as well as topological structure of Cp(X), in which the Nagata theorem theorem is essential. We observe some properties of X, which are preserved by l-equivalence or t-equivalence, i.e., which are respectively determined either by the linear topological structure of Cp(X) or by its topological one. Finally we study in which conditions Cp(X) is a Lindelöf space. We conclude with the proof of Okunev that the Lindelöf number of Cp(X) is equal to the Lindelöf number of Cp(X)xCp(X), for strongly zero-dimensional spaces X.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
DissBartira.pdf (736.86 Kbytes)
Data de Publicação
2015-08-31
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.