• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.45.2006.tde-14012007-194635
Documento
Autor
Nome completo
Neusa Nogas Tocha
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2006
Orientador
Banca examinadora
Lourenco, Mary Lilian (Presidente)
Alencar, Raymundo Luiz de
Ascui, Jorge Tulio Mujica
Botelho, Geraldo Márcio de Azevedo
Villarroel, Humberto Daniel Carrión
Título em português
Zeros de polinômios e propriedades polinomiais em espaços de Banach
Palavras-chave em português
espaço de Banach
polinômio
polinômio N-homogêneo
propriedades P e RP
zero de polinômio
Resumo em português
Neste trabalho temos por objetivo apresentar alguns resultados relacionados aos temas abordados por Aron, Choi e Llavona (1995), Aron e Dimant (2002) e Aron e Rueda (1997). Primeiramente, vamos estudar as propriedades polinomiais (P) e (RP) para os espaços de Banach e a propriedade ACL para as funções definidas entre as bolas unitárias fechadas do espaço. Vamos apresentar novos exemplos de espaços de Banach que possuem a propriedade (P) onde é possível exibir funções que satisfazem a propriedade ACL. Vamos ainda estudar o conjunto de continuidade seqüencial fraca de um polinômio N-homogêneo contínuo com valores vetoriais. Apresentamos as suas propriedades básicas e algumas conexões com o caso dos polinômios escalares. No espaço dual faremos uma breve análise dos polinômios com certo tipo de continuidade com relação à topologia fraca-estrela. Numa outra direção, estudamos os zeros de polinômios N-homogêneos em várias variáveis complexas, mais especificamente, dados n, N números naturais existe um número natural m tal que para cada polinômio N-homogêneo complexo P definido no espaço vetorial C^ existe um subespaço vetorial X_ contido no conjunto dos zeros do polinômio P de dimensão n. Aqui, o principal objetivo é melhorar as limitações para m encontradas por Aron e Rueda (1997) como também generalizar os seus resultados.
Título em inglês
Zeros of polynomials and properties polynomials in Banach spaces
Palavras-chave em inglês
Banach space
N-homogeneous polynomial
polynomial
properties P and RP
zero of polynomial
Resumo em inglês
Our purpose here is to study some results regarding the articles of Aron, Choi and Llavona (1995), Aron and Dimant (2002) and Aron and Rueda (1997). Firstly, we study properties (P) and (RP) for the Banach spaces and the ACL property for the functions defined between the closed unit balls. We give new examples of Banach spaces which have (P) property and some functions defined in those spaces satisfying the ACL property. We also study the set of weak sequential continuity of a vector-valued continuous Nhomogeneous polynomial. In the dual space we study the N-homogeneous polynomials which are weak-star continuous on bounded sets. Finally, we study the zeros of complex N-homogeneous polynomials. This means, given positive integers n and N, there is a positive integer m such that an complex N-homogeneous polynomial P defined in C^ has an ndimensional subspace contained in its zero set. We discuss the problem of finding a good bound on m as a function of n and N. We improve the results given by Aron and Rueda (1997) as also generalize their results.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
neusatocha.pdf (523.49 Kbytes)
Data de Publicação
2007-07-30
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.