• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.43.2018.tde-25062018-110113
Documento
Autor
Nome completo
Edi Carlos Pereira de Sousa
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2018
Orientador
Banca examinadora
Pontuschka, Walter Maigon (Presidente)
Cornejo, Daniel Reinaldo
Fantini, Marcia Carvalho de Abreu
Kassab, Luciana Reyes Pires
Ludwig, Zélia Maria da Costa
Título em português
Mecanismos de ação de nanopartículas de prata no comportamento de propriedades mecânicas celulares
Palavras-chave em português
caracterização
citotoxicidade
mecânica celular
microscopia de fluorescência
nanopartículas de prata
viscoelasticidade.
Resumo em português
Neste trabalho estudamos a interação de dois tipos de nanopartículas de prata metálica, obtidas pelo processo de poliol (IQUSP) e pelo método eletrolítico (Khemia®), em células de músculo liso. Um extenso trabalho de caracterização foi realizado, descrevendo a natureza físico-química dessas nanopartículas. Medidas de absorção óptica mostraram que as nanopartículas exibem bandas suaves em torno de 400 nm, região do azul do espectro eletromagnético, devido à ressonância dos plasmons de superfície, evidenciando a tendência à agregação com o tempo. Microscopia eletrônica de transmissão foi realizada para obter as imagens das nanopartículas em micrografias. Histogramas foram construídos para determinar o tamanho das NPs e o índice de polidispersividade. Espectros de EDS foram obtidos para a caracterização química das amostras. Difratogramas de raios X foram obtidos para as AgNPs. Os picos de difração foram indexados e revelaram uma única fase cristalina da prata, com estrutura cúbica e estado de oxidação, Ag0. Com o auxílio desses difratogramas, foram calculados o parâmetro de rede e a distância interplanar dos planos de difração. Utilizando a equação de Scherrer e um ajuste gaussiano dos picos de Ag mostrados nos difratogramas de raios X, foi possível obter o tamanho do cristalito para nanopartículas IQUSP. Experimentos de DLS mostraram distribuição de número monomodal para AgNPs Khemia® e, para AgNPs IQUSP lavadas, distribuição bimodal, estimando-se a distribuição de número e tamanho. Os resultados mostraram que a distribuição dominante é sempre para raios menores, sugerindo partículas menores que se agregam com o tempo e formam maiores dimensões. Resultados de SAXS mostraram que as amostras fornecem boa intensidade de espalhamento. Utilizando modelos teóricos foram calculados o raio médio da distribuição, polidispersividade e raio de giro. Os dados revelaram que as nanopartículas IQUSP possuem um raio maior que as AgNPs Khemia® e não apresentaram agregação. Em contrapartida, AgNPs Khemia® apresentaram maior agregação, com polidispersividade relativa de 72%. Para AgNPs IQ--USP, análises de SAXS forneceram tamanho de partícula comparável a TEM e bastante diferente de DLS. As medidas de SAXS para AgNPs Khemia® mostram diferenças com as medidas de TEM e DLS. Ficou evidente o efeito da agregação, que tem influências desde o preparo das amostras até o tempo de realização das medidas. Testes de citotocixidade e estudos de análise morfológica por microscopia de fluorescência evidenciaram as características citotóxicas de cada nanopartícula. Os resultados apresentados pela análise morfológica realizada com microscopia de fluorescência concordam com os testes de citotoxicidade. AgNPs IQUSP mostraram alta toxicidade até a concentração 9.37 mg/mL, onde as células são apresentadas com fragmentação nuclear. Em concentrações mais baixas, as AgNPs IQUSP exibiram características morfológicas comparáveis ao grupo controle. Por sua vez, AgNPs Khemia® mostram alta toxicidade até a concentração 1.37 mg/mL, com índice IC50 variando na faixa de 1.3 a 6.7 mg/mL. Foi possível observar que concentrações mais altas induzem à fragmentação nuclear, desencadeando processos como apoptose e necrose. Experimentos utilizando a técnica de OMTC demonstraram que as diferentes concentrações de nanopartículas de prata podem modificar a rigidez celular. Isto é evidenciado quando comparamos o grupo controle com os demais grupos, com as diferentes concentrações de NPs. Para concentrações mais altas de nanopartículas, verificou-se um aumento da viscoelasticidade. Os dois tipos de nanopartículas estudadas apresentaram mudanças nas propriedades mecânicas, mas as AgNPs Khemia® apresentaram um maior aumento na viscoelasticidade nas diferentes concentrações de NPs. Essa mudança na viscoelasticidade foi explicada como sendo devido à maior disponibilidade do cálcio, liberado por células apoptóticas, o qual é utilizado no complexo miosina-actina para gerar contração muscular.
Título em inglês
Mechanisms of action of silver nanoparticles in the behavior of cell mechanical properties
Palavras-chave em inglês
cell mechanics
characterization
cytotoxicity
fluorescence microscopy
silver nanoparticles
viscoelasticity.
Resumo em inglês
In this work we study the interaction of two types of metallic silver nanoparticles, obtained by the polyol process (IQUSP) and the electrolytic method (Khemia®), in smooth muscle cells. An extensive characterization work was carried out, describing the physico-chemical nature of these nanoparticles. Optical absorption measurements showed that nanoparticles exhibit smooth bands around 400 nm, the blue region of the electromagnetic spectrum, due to the resonance of the surface plasmons, evidencing the tendency to aggregate with time. Transmission electron microscopy was performed to obtain images of the nanoparticles in micrographs. Histograms were constructed to determine the size of NPs and the index of polydispersity. EDS spectra were obtained for the chemical characterization of the samples. X-ray diffraction patterns were obtained for the AgNPs. The diffraction peaks have been indexed and showed a single crystal layer of silver, with cubic structure and oxidation state, Ag0. By means of these diffractograms, the network parameter and the interplanar distance of the diffraction planes were calculated. Using the Scherrer equation and a Gaussian fit of the Ag peaks shown in the X-ray diffractograms, it was possible to obtain the crystallite size for IQ-USP nanoparticles. DLS experiments showed monomodal number distribution for Khemia® AgNPs and, for washed IQUSP AgNPs, bimodal distribution, estimating the number and size distribution. The results showed that the dominant distribution is always for smaller rays, suggesting smaller particles that aggregate with time and form larger dimensions. SAXS results showed that the samples provide good scattering intensity. Using the theoretical models, the average radius of the distribution, polydispersity and radius of gyration were calculated. The data revealed that the IQUSP nanoparticles have a larger radius than the Khemia® and did not show aggregation. In contrast, Khemia® AgNPs showed higher aggregation, with 72% relative polydispersity. For IQ-USP AgNPs, SAXS analyzes provided particle size comparable to TEM and quite different from DLS. SAXS measurements for Khemia® AgNPs show differences with TEM and DLS measurements. It was evident the effect of the aggregation that has influences from the sample preparation until the time of performing the measurements. Cytotoxicity tests and morphological analysis studies by fluorescence microscopy evidenced the cytotoxic characteristics of each nanoparticle. The results presented by the morphological analysis performed with fluorescence microscopy agree with the cytotoxicity tests. IQ-USP nanoparticles showed high toxicity up to the concentration of 9.37 mg/mL, where the cells are presented with nuclear fragmentation. At lower concentrations, the IQUSP AgNPs exhibited morphological characteristics comparable to the control group. In addition, Khemia® AgNPs show high toxicity up to the concentration of 1.37 mg/mL, with IC50 in the range of 1.3 to 6.7 mg/mL. It was possible to observe that higher concentrations induce nuclear fragmentation, triggering processes such as apoptosis and necrosis. Experiments using the OMTC technique demonstrated that different concentrations of silver nanoparticles can modify cell stiffness. This is evidenced when we compare the control group with the other groups, with the different concentrations of NPs. For higher concentrations of nanoparticles, there was an increase in viscoelasticity. The two types of nanoparticles studied showed changes in mechanical properties, but Khemia® AgNPs showed a greater increase in viscoelasticity at different concentrations. This change in viscoelasticity was explained to be due to the increased availability of calcium, released by apoptotic cells, which is used in the myosin-actin complex to generate muscle contraction.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
TDE_SECP_F.pdf (58.14 Mbytes)
Data de Publicação
2018-06-28
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2024. Todos os direitos reservados.