• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.3.2011.tde-11082011-125123
Documento
Autor
Nome completo
Emiliano Gonçalves de Castro
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2011
Orientador
Banca examinadora
Tsuzuki, Marcos de Sales Guerra (Presidente)
Gonzalez Clua, Esteban Walter
Martins, Thiago de Castro
Takase, Fábio Kawaoka
Tori, Romero
Título em português
Proposta para previsão de evasão baseada em padrões de acesso de usuários em jogos online.
Palavras-chave em português
Jogos eletrônicos
Previsão de evasão
Wavelets
Resumo em português
O mercado de jogos eletrônicos online tem crescido em ritmo acelerado nos últimos anos, particularmente a partir do surgimento do modelo de negócio baseado em serviços. Como consequência, as publicadoras destes jogos passaram a compartilhar problemas comuns na área de serviços, como a erosão do lucro causada pela evasão de usuários. Modelos preditivos têm sido utilizados no combate à evasão em mercados como os de telefonia móvel e de cartões de crédito, setores que detêm um grande volume de informações demográficas e econômicas a respeito dos seus consumidores. Já os publicadores de jogos muitas vezes só possuem o endereço eletrônico dos jogadores. O objetivo deste trabalho é propor um modelo de previsão de evasão com base exclusivamente nos padrões de acesso de usuários em jogos online, onde estes registros temporais são submetidos a um conjunto de operadores que analisam os dados no domínio do plano tempo-frequência, utilizando a Transformada Discreta de Wavelet. Sua principal contribuição está na proposta de parametrização dos dados de entrada para classificadores probabilísticos baseados no algoritmo k-Nearest Neighbors. Testados com dados reais de acessos de usuários ao longo de alguns meses em um jogo online, os classificadores foram avaliados com o uso de curvas ROC (Receiver Operating Characteristic) e de elevação. A abordagem proposta nesta tese, baseada na análise no domínio do plano tempo-frequência, apresentou resultados satisfatórios. Não apenas superiores se comparados com as abordagens no domínio do tempo ou da frequência, mas também comparáveis aos desempenhos encontrados por modelos com centenas de variáveis preditivas utilizados em outros mercados.
Título em inglês
Proposal for churn prediction based on online games users' access patterns.
Palavras-chave em inglês
Churn prediction
Games
Wavelets
Resumo em inglês
The online gaming market has rapidly grown in recent years, particularly since the rise of the service-based business model. As a result, the publishers of these games have started to share usual problems from the services business, like the profit erosion caused by customer churn. Predictive models have been used to address the churn problem in the mobile phones and credit cards markets, where companies have a huge volume of demographic and economic data about their customers. While game publishers often have only their users email addresses. The goal of this study is to propose a model for churn prediction based solely on the online games users access patterns, where these time entries are fed into a set of operators that are able to analyze the data in the time-frequency plane domain, using the Discrete Wavelet Transform. Its main contribution is the input data parameterization proposed for the probabilistic classifiers based on the k-Nearest Neighbors algorithm. Tested with real data from an online game users access over a few months, the classifiers were evaluated using ROC (Receiver Operating Characteristic) and lift curves. The approach proposed in this thesis, based on the analysis of the time-frequency plane domain, has shown satisfactory results. Not only higher when compared with approaches based on both time or frequency domains, but also comparable to performances found on models with hundreds of predictive variables used in other markets.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2011-09-05
 
AVISO: O material descrito abaixo refere-se a trabalhos decorrentes desta tese ou dissertação. O conteúdo desses trabalhos é de inteira responsabilidade do autor da tese ou dissertação.
  • Castro, E. G., and Tsuzuki, M. S. G. Swarm Intelligence applied in synthesis of hunting strategies in a three-dimensional environment [doi:10.1016/j.eswa.2007.02.031]. Expert Systems with Applications [online], 2008, vol. 34, p. 1995-2003.
  • Castro, E. G., and Tsuzuki, M. S. G. Designing Cooperation Strategy in a 3D Hunting Game Using Swarm Intelligence [doi:10.1109/ISDA.2007.56]. In Seventh International Conference on Intelligent Systems Design and Applications, Rio de Janeiro, 2007. Proceedings of the 7th International Conference on Intelligent Systems Design and Application.Los Alamitos, Estados Unidos : IEEE Computer Society Press, 2007.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2014. Todos os direitos reservados.