• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.3.2017.tde-28032017-090602
Documento
Autor
Nome completo
Hamilton Fernando de Souza Araujo
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2006
Orientador
Banca examinadora
Krieger Filho, Guenther Carlos (Presidente)
Jen, Lin Chau
Saltara, Fabio
Título em português
Modelagem de uma chama de difusão utilizando-se a técnica de simulação de grandes estruturas turbulentas.
Palavras-chave em português
Combustão
Gás natural
Metano
Turbulência
Resumo em português
O presente trabalho versa sobre a modelagem de uma chama turbulenta difusiva usando a técnica de simulação de grandes estruturas turbulentas (LES), juntamente com o modelo termo-químico de folha de chama (flame sheet model) e o conceito de fração de mistura como escalar conservativo. Este trabalho também é pioneiro de utilização de LES com reação química no Brasil, podendo colaborar para o desenvolvimento desta técnica na área de combustão. O trabalho consiste na construção e validação das rotinas computacionais de um código CFD, baseado em LES e com flexibilidade para uma futura utilização de cinética química detalhada de combustão (EDC/ISAT), para casos complexos onde modelos mais simples, como a fração de mistura, são falhos. O programa será validado em uma chama de difusão turbulenta não-confinada de metano (CH4), para a qual existem dados experimentais na literatura [61,62] e utilizados pela comunidade acadêmica em excelência (Stanford, TU-Darmstadt, Imperial College, Cornell University etc). As características da implementação numérica do código permitirão sua expansão futura para outras aplicações em: queima de combustíveis líquidos, combustão em câmaras fechadas e fornalhas com a inclusão de modelo de radiação.
Título em inglês
Large eddy simulation of methane diffusion flame.
Palavras-chave em inglês
Combustion
Large eddy simulation
Methane
Natural gas
Turbulent flow
Resumo em inglês
The present work is about modeling a diffusive turbulent flame using the Large-Eddy Simulation approach (LES) and the Flame Sheet model as the chemical model with the mixture fraction concept as the conservative scalar. This work is pioneer in the sense of using LES and reactive flow in Brazil, making possible the development for LES techniques in the combustion area. The work is intended to construct and validate a CFD code based on LES and with future flexibility for a more detailed combustion chemical model (EDC/ISAT) for complex flows, where simple models are failed, like the mixture fraction. The program will be validated for a turbulent diffusion methane (CH4) flame not confined, which there are some experimental data on the specialized literature [61,62], and commonly used by the academic community (Stanford, TU-Darmstadt, Imperial College, Cornell University etc). The features of the numerical code implementation will make possible future expansion of its use in other applications: liquid fuel burning, combustion chambers and ovens with the radiation model inclusion.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2017-03-28
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2024. Todos os direitos reservados.